Hadoop节点"慢磁盘"监控

本文介绍了如何发现和监控Hadoop集群中的慢磁盘问题,包括通过心跳未联系次数、Ganglia监控和自定义脚本来定位慢磁盘。作者分享了在Hadoop层面对每个磁盘写操作时间进行监控的方法,并提供了实现该功能的开源patch。一旦发现慢磁盘,建议立即下线并联系运维部门处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

最近在工作中解决了一个慢磁盘的问题,个人感觉整个发现-分析-解决的过程还是非常有意思并且很有意义的.而且磁盘监控在目前的Hadoop中还是没有做的很全的,大多数都是对Datanode,可以说这是1个盲区.其实想一想,hadoop自身不做这方面的监控也合理,因为像这种问题基本上是属于硬件问题,本不应该在软件层面对其进行监控,没有这么大的必要.但是后来我们想了想,如果通过软件层面的监控手段发现机器硬件上的问题也不错,至少能发现问题,何乐而不为呢.下面进入文章的正题.


慢磁盘

在这里我姑且用这个名词来解释这个现象,用专业点的英文术语说应该是slow-writed disk,译为写入操作很慢的磁盘,写操作主要包括创建文件,目录,写文件这些操作.而慢磁盘的理解就是进行这些写操作耗时远远超出平均值时间的磁盘.我们在最近就碰到了这样的场景,其他正常的盘基本上创建1个Test目录,只需1/10或者快的1/100秒左右的时间,而我惊奇的发现有块盘竟然花了5分钟左右,而且更奇怪的是,有的时候会出现有的时候又不会出现这样的现象.一旦出现了慢磁盘,将会严重拖慢这个节点的整体运行效率,继而让此节点成为集群中的慢节点,最后影响整个集群.那么问题来了,既然慢磁盘这么重要,我们怎么准确定位到哪台机器的哪块磁盘有问题的,那么多个节点,每个节点上又有那么多块盘.


慢磁盘的发现

下面教大家几个方法:

1.通过心跳未联系次数.一般如果出现慢磁盘现象,会影响到datanode与namenode的心跳,这个值会变得很大.


2.通过ganglia对datanode写操作相关的监控,这个是传统的方式.

对比几个特殊的节点观察时间有没有特别长的.

当然以上是确定可疑慢磁盘所在节点,假设异常节点已经发现,下面是怎么发现上面的慢磁盘,这个方法不用想的那么复杂,这里提供最简单的方法,写1个脚本,在所有的磁盘上执行

time mkdir test
rm -r -f test

观察哪个磁盘所花的时间最长就可以了.当然你想用Linux工具专门的检查磁盘读写性能的命令,当然最好了.


慢磁盘监控

上面提供的方法在使用性和准确性方面还是存在许多偏差的,尤其是在寻找慢磁盘的方法上,因此最权威的方法还是在hadoop层面对每个磁盘进行写操作的时间进行监控,这无疑是最准的,所以我们要加自定义的Metrics代码,下面简单介绍一下我们是如何对此进行改造的.首先要明白一定的原理,datanode写磁盘对应的关系是<

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值