就要喷php5的Call-time pass-by-reference has been removed

本文深入探讨了PHP中调用方式变动的影响,指出移除调用时写`&`的方式可能导致的不可预测性问题,并提出在项目管理上采用统一规则的建议,以减少错误和提高代码可读性。

Call-time pass-by-reference has been removed

情况大家网上自己搜,简单点说就是移除了在调用函数时写foo(&$var)


这样做真的合理吗

首先,我当初对这种调用方式并不是很熟,我原以为像C#的ref一样,定义的有&那调用时也要有,配对出现,很合理。

但看现在的说明,看来php原来是很自由的:调用时有&,那就是传参,定义时有&也是传参,二者有其一即可。

现在的情况是取消了调用时写&的方式,只能在定义时用。

但这样忽略了另一种使用上的问题

function foo(& $var) {
   //other code
}

像这样的定义,调用时写foo(&$var)这样我就明确知道,这个参数可能被改掉,而不用去实际的函数定义里查看它会不会被改,这是一个明确的预期。

虽然语言上支持定义时写&调用时不写,但项目管理上如果规定这样写,可以减少很多不必要的BUG,比如调用别人的函数时莫名其妙的值就被改了,会产生一些不能预知的问题。

现在统一在调用时不写了,我们将难以预期函数的行为,设计PHP语法的人脑子进水了吗?


还有php升级版本时老是不能兼容原版本——改配置,取消配置,取消函数,等等。搞出巨量问题,.net是这样的吗,完全没有一个良好的设计,让开发人员完全无所适从。


随便说一句

取消了$HTTP_GET_VARS之类的定义,可以用这样一句简单的统一实现,以免修改太多代码

$HTTP_GET_VARS = $_GET;

<think>嗯,用户问的是关于scikit-learn中load_boston被移除后的替代方案。我记得在1.2版本之后,这个数据集因为伦理问题被移除了。用户可能遇到了导入错误,需要解决方法。 首先,我需要确认用户的问题。用户可能在使用旧代码时遇到了ImportError,提示load_boston不可用。他们需要知道如何替代这个数据集,可能是要继续进行房价预测或者回归分析的实验。 根据之前的引用,解决方案可能有几种。比如,从原始URL下载数据,或者使用其他数据集替代,比如fetch_california_housing。但用户可能需要保留波士顿房价的数据结构,所以直接下载原始数据可能是更好的选择。 然后,我需要考虑用户的实际应用场景。他们可能是在教学、学习或者项目中遇到这个问题。使用替代数据集的话,可能需要调整特征名称或数据处理步骤。而使用原始数据的话,可能需要更多的数据处理步骤,比如用pandas读取和整理数据。 另外,用户可能希望代码能兼容新版本的scikit-learn,避免未来再出现类似问题。所以,提供几种不同的解决方法会比较好,比如官方推荐的替代数据集,或者自行加载原始数据的方法。 还要注意代码的正确性。比如,在引用[4]中提到的data_url和数据处理步骤是否正确,是否需要调整列名或者数据拼接方式。可能需要验证一下这些步骤是否真的能正确加载数据,避免用户运行时再出错。 最后,用户可能还需要了解为什么这个数据集被移除,以理解替代的必要性。所以在回答中加入伦理问题的背景信息会有帮助,这样用户不仅解决了问题,还了解了背后的原因。 总结一下,回答应该包括几种替代方法,解释每种方法的步骤,并给出代码示例。同时,说明被移除的原因,帮助用户全面理解问题。</think>### load_boston被移除后的替代方案及解决方法 自scikit-learn 1.2版本起,`load_boston`因数据集涉及的伦理问题(包含种族相关特征)被官方移除[^1]。以下是几种可行的替代方案: --- #### 方法一:使用原始数据手动加载 通过CMU的原始数据URL直接加载波士顿房价数据,并转换为DataFrame格式: ```python import pandas as pd import numpy as np data_url = "http://lib.stat.cmu.edu/datasets/boston" raw_df = pd.read_csv(data_url, sep=r"\s+", skiprows=22, header=None) data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) target = raw_df.values[1::2, 2] # 转换为DataFrame并添加列名 feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'] boston_df = pd.DataFrame(data, columns=feature_names) boston_df['PRICE'] = target ``` 此方法完全复现原数据集结构,适用于需要保持代码兼容性的场景[^4]。 --- #### 方法二:使用替代数据集 scikit-learn推荐使用`fetch_california_housing`替代(需sklearn≥0.20): ```python from sklearn.datasets import fetch_california_housing california = fetch_california_housing() X, y = california.data, california.target ``` 该数据集包含8个无伦理争议的特征,适合教学和回归实验。 --- #### 方法三:降级scikit-learn版本 若需临时兼容旧代码(不推荐长期使用): ```bash pip install scikit-learn==1.1.3 ``` 但需注意此操作可能导致其他依赖冲突。 --- ### 伦理问题说明 原波士顿数据集因包含`B`(黑人比例)和`LSTAT`(低收入人群比例)等敏感特征,可能引发模型偏见问题[^1]。建议在新项目中使用更中立的数据集。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值