【且听我说“镶嵌数据集建库”】7、影像产品管理流程及典型应用(上)

本文介绍两种在ArcGIS中管理影像数据的方法:一是通过扩展RasterType并利用元数据文件实现高效查询与检索;二是直接使用RasterDataset进行管理。此外还详细说明了每种方法的具体步骤。

        如同国产卫星影像数据,影像产品的管理同样存在这个问题——ArcGIS本身并没有提供与之对应的Raster Type,因此需要通过栅格类型扩展实现影像产品的管理。除此之外,可以利用GP工具Model Builder构建影像管理模型实现影像产品入库。如果对影像元数据没有要求,可直接利用Raster Dataset进行管理。

       方式一:扩展Raster Type实现影像管理

       通过扩展Raster Type实现影像管理,为了实现影像管理之后的查询、检索等操作,需要利用影像产品元数据文件。分发的影像产品如未提供元数据文件,需要进行自定义。典型的利用扩展Raster Type实现影像产品建库流程如下:

      (1)        扩展影像产品Raster Type

       对于没有配套元数据文件的影像产品,需要根据产品自定义元数据文件。元数据文件应包括实际应用中所需要的属性信息,如采集时间,云覆盖量,传感器类型,分辨率,产品级别等。对于元数据定义没有具体限制,因需而定。

利用c#或c++工具进行Raster Type定制开发。通过Raster Type扩展识别影像产品,进而实现影像元数据、轮廓线及影像存储路径等信息的抓取。

     (2)        数据预处理(可选)

      构建影像金字塔与属性信息统计。

     (3)        镶嵌数据集建库

      1)      建立镶嵌数据集

      2)      添加影像数据

      影像管理过程中,添加影像数据时选择对应的影像产品栅格类型进行管理,如下图,“重庆地理信息中心影像类型”即为经过扩展的影像产品类型。


图:影像产品RasterType扩展

     3)      构建轮廓线

     影像产品添加后,需要重新计算影像轮廓线。

     4)      影像匀色

     利用匀色工具进行镶嵌数据集匀色。

     5)      构建接边线

     6)      构建概视图

     方式二:利用Raster Dataset实现影像产品管

      如对影像产品的元数据没有要求,在添加影像数据时,Raster Type类型选择 Raster Dataset,利用此种方式实现影像产品的入库管理。

     利用RasterDataset实现影像产品管理典型流程:

     -         建立镶嵌数据集

     -         添加影像数据,Raster Type选择Raster Dataset

     -         构建轮廓线

     -         影像匀色

     -         构建接边线

     -         构建概视图

     通过RasterDataset管理的影像数据不具有影像元数据信息,可以手动添加影像元数据。

   (1) 展开镶嵌数据集属性表

     图层>右键FootPrint>Table

  (2)添加属性列  

     Table Options>Add Field。输入属性列名称“Cloud_Cover”


图:属性列添加

(3)        启动编辑,手动输入属性值


图:属性编辑



未完待续

数据集概述 本数据集用于情感分析,主要针对Yelp评论,通过比较两种先进的模型——Hugging Face的bert-base-multilingual-uncased和cardiffnlp/twitter-roberta-base-sentiment-latest来分析评论中的情感表达。 模型使用 BERT Multilingual Uncased: 适用于理解多种语言,特别适合处理Yelp评论中多样化的语言特性。 Twitter RoBERTa: 专门针对情感分析进行微调,擅长理解英语情感的细微差别。 构方式 Yelp Reviews Dataset的构基于Yelp平台上用户提交的评论数据。该数据集通过爬虫技术从Yelp网站上抓取,涵盖了多个国家和地区的餐厅、服务和商品的评论。数据收集过程中,确保了评论的完整性和真实性,同时对文本进行了预处理,包括去除HTML标签、特殊字符和停用词,以保证数据的质量和可用性。 特点 Yelp Reviews Dataset的特点在于其广泛的地理覆盖和多样化的评论内容。数据集包含了数百万条评论,涵盖了从星级评价到详细文本反馈的多种信息形式。此外,该数据集还提供了用户、商家和评论之间的关联信息,使得研究者可以进行多维度的分析。评论的情感倾向和语言风格也为自然语言处理和情感分析提供了丰富的素材。 使用方法 Yelp Reviews Dataset可用于多种研究目的,包括但不限于情感分析、用户行为研究、推荐系统构和市场分析。研究者可以通过分析评论文本,提取用户的情感倾向和偏好,进而优化推荐算法或改进服务质量。此外,该数据集还可用于训练和验证自然语言处理模型,如情感分类器和文本生成模型。使用时,议根据具体研究需求选择合适的子集和特征进行分析。 背景与挑战 背景概述 Yelp Reviews Dataset,作为在线评论平台Yelp的核心
本项目旨在开发一个基于Python的卷积神经网络(CNN)人脸识别系统,用于检测驾驶员的疲劳状态并及时发出预警。该系统主要通过分析驾驶员的面部特征,如打哈欠、眨眼和点头等行为,来判断驾驶员是否处于疲劳状态,从而提高驾驶安全性。 开发环境 IDE: PyCharm 编程语言: Python 3.6 算法: 卷积神经网络(CNN) 系统功能 本系统主要分为三个部分: 打哈欠检测:通过检测驾驶员的嘴巴张合程度来判断是否打哈欠。 眨眼检测:通过分析驾驶员的眼睛开合度和眨眼频率来判断是否疲劳。 点头检测:通过检测驾驶员的头部姿态变化来判断是否疲劳。 疲劳检测原理 人在疲倦时通常会出现以下两种状态: 眨眼:正常情况下,人的眼睛每分钟大约会眨动10-15次,每次眨眼大约0.2-0.4秒。当人疲劳时,眨眼次数会增加,速度也会变慢。 打哈欠:疲劳时,人的嘴巴会张大并保持一定状态。 因此,通过检测眼睛的开合度、眨眼频率以及嘴巴的张合程度,可以判断一个人是否处于疲劳状态。 检测工具 本项目使用dlib进行人脸检测和关键点定位。shape_predictor_68_face_landmarks.dat是一个用于人脸68个关键点检测的模型,能够方便地进行人脸检测和应用。 眨眼计算原理 计算眼睛的宽高比(Eye Aspect Ratio, EAR)是判断眨眼状态的关键。当人眼睁开时,EAR值较大;当人眼闭合时,EAR值较小。通过实时计算EAR值的变化,可以判断驾驶员是否在眨眼。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值