LauncherModel.Callbacks接口

 public interface Callbacks {
        //如果Launcher在加载完成之前被强制暂停,那么需要通过这个回调方法通知
        //launcher,在它再次显示的时候重新执行加载过程
        public boolean setLoadOnResume();
        //获取当前用户所在的桌面页索引
        public int getCurrentWorkspaceScreen();
        //启动桌面组件绑定
        public void startBinding();
        /**
         *   批量绑定桌面组件
         * @param shortcuts 需要绑定的快捷方式列表
         * @param start 列表的开始位置
         * @param end 列表的结束位置
         * @param forceAnimateIcons  是否使用动画
         */
        public void bindItems(ArrayList<ItemInfo> shortcuts, int start, int end,
                              boolean forceAnimateIcons);
        /**
         *  批量绑定桌面页
         * @param orderedScreenIds 序列化后的桌面页列表
         */
        public void bindScreens(ArrayList<Long> orderedScreenIds);
        //同上
        public void bindAddScreens(ArrayList<Long> orderedScreenIds);
        /**
         *  批量绑定文件夹
         * @param folders 文件夹映射列表
         */
        public void bindFolders(LongArrayMap<FolderInfo> folders);
        //绑定任务完成
        public void finishBindingItems();
        /**
         *  往桌面上绑定小部件
         * @param info 需要绑定到桌面上的小部件信息
         */
        public void bindAppWidget(LauncherAppWidgetInfo info);
        /**
         *   绑定应用程序列表界面的应用程序信息
         * @param apps 需要绑定到应用程序列表中的应用程序列表
         */
        public void bindAllApplications(ArrayList<AppInfo> apps);
        /**
         *  批量添加组件
         * @param newScreens   添加的桌面页列表
         * @param addNotAnimated  无需动画添加组件
         * @param addAnimated    动画方式添加组件
         * @param addedApps    添加所有应用程序菜单
         */
        public void bindAppsAdded(ArrayList<Long> newScreens,
                                  ArrayList<ItemInfo> addNotAnimated,
                                  ArrayList<ItemInfo> addAnimated,
                                  ArrayList<AppInfo> addedApps);
        /**
         *  批量更新应用程序相关的快捷方式或者入口
         * @param apps 已经更新的应用程序信息
         */
        public void bindAppsUpdated(ArrayList<AppInfo> apps);
        /**
         *  从桌面移除一些组件,当应用程序被移除或者禁用的时候调用
         * @param packageNames 以包名指定的应用程序信息列表
         * @param appInfos   以应用程序信息指定的应用程序信息列表
         * @param user   当前用户信息
         * @param reason  
         */
        public void bindComponentsRemoved(ArrayList<String> packageNames,
                        ArrayList<AppInfo> appInfos, UserHandleCompat user);
        public void bindAllPackages(WidgetsModel model);
        //全局搜索或者搜索属性更新
        public void bindSearchProviderChanged();
        /**
         *   
         * @param rank 输入范围
         * @return  是否为应用程序菜单
         */
        public boolean isAllAppsButtonRank(int rank);
        /**
         * 指示正在绑定的页面
         * @param page  桌面页序号
         */
        public void onPageBoundSynchronously(int page);
        //输出当前Launcher信息到本地文件中
        public void dumpLogsToLocalData();

    }
你提到的导入语句: ```python from tensorflow.keras.callbacks import ... ``` 通常用于从 Keras 中导入回调函数(Callbacks),例如 `ModelCheckpoint`, `EarlyStopping`, `TensorBoard` 等。这些回调在模型训练过程中用于监控、记录、保存模型状态或提前终止训练等。 --- ## ⚠️ 可能出现的警告 在 TensorFlow 2.16+ 中,你可能会看到类似如下警告: ``` WARNING:tensorflow:From /path/to/your/code.py:1: The name tf.keras.callbacks.ModelCheckpoint is deprecated. Please use tf.keras.callbacks.ModelCheckpoint instead. ``` ⚠️ 实际上这个警告并不影响功能,它只是提示某些 API 已被标记为“legacy”,因为 TensorFlow 正在逐步将内部 Keras 模块与独立的 [Keras](https://github.com/keras-team/keras) 包统一。 --- ## ✅ 推荐用法:标准导入方式(兼容性好) 目前大多数回调类仍然可以直接使用: ```python from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard, ReduceLROnPlateau callbacks = [ ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3), TensorBoard(log_dir='./logs'), ReduceLROnPlateau(factor=0.2, patience=2) ] model.fit(..., callbacks=callbacks) ``` ✅ **注意:** 在 TF 2.16+ 中,虽然有些回调没有显式移入 `legacy` 模块,但它们的实现可能已经改用新的 Keras 核心机制,所以建议关注官方文档更新。 --- ## 🔁 如何避免警告信息? ### 方法一:使用 `tf.keras.callbacks.LegacyCallback` 如果你希望完全避免警告,可以尝试直接使用 `legacy` 模块(部分回调支持): ```python from tensorflow.keras.callbacks import legacy as legacy_callbacks # 示例: early_stopping = legacy_callbacks.EarlyStopping(patience=3) ``` > 注意:不是所有回调都支持 `.legacy` 路径,因此仍推荐使用标准路径导入。 --- ## 🧪 常见回调及其用途 | 回调名称 | 功能 | |----------|------| | `ModelCheckpoint` | 每隔一定 epoch 或最佳性能时保存模型 | | `EarlyStopping` | 当验证损失不再改善时提前停止训练 | | `TensorBoard` | 启动 TensorBoard 日志记录 | | `ReduceLROnPlateau` | 当性能停滞时自动降低学习率 | | `CSVLogger` | 将每个 epoch 的训练日志写入 CSV 文件 | | `LearningRateScheduler` | 自定义学习率调度器 | --- ## ✅ 示例代码:完整使用回调的训练流程 ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping # 构建简单模型 model = Sequential([ Dense(64, activation='relu', input_shape=(10,)), Dense(1) ]) model.compile(optimizer='adam', loss='mse') # 准备数据 import numpy as np x = np.random.rand(1000, 10) y = np.random.rand(1000, 1) # 设置回调 callbacks = [ ModelCheckpoint('best_model.h5', save_best_only=True), EarlyStopping(patience=5) ] # 开始训练 model.fit(x, y, epochs=100, validation_split=0.2, callbacks=callbacks) ``` --- ##
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值