ARIMA模型

ARIMA模型是时间序列分析中的重要工具,尤其适用于非平稳序列。它通过差分将非平稳序列转换为平稳序列,结合ARMA模型进行分析。模型建立包括数据平稳性处理、白噪声检验、模型识别、参数估计和模型验证。通过自相关函数和偏自相关函数确定p和q的值,并用AIC准则定阶。ARIMA模型在时间序列预测中发挥关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间序列分析分为两大类:频域分析和时域分析。频域分析也称为谱分析,是一种非常有用的纵向数据分析方法。时域分析主要关心从序列值之间的相关关系对时间序列发展规律。


在时域分析里,生成时间序列数据的随机过程按照统计规律的特征是否随着时间变化而变化分为两类,如果随机过程的特征随着时间变化,如GDP的时间序列一般随着时间稳定增长,则此过程是非平稳的;相反,如果随机过程的特征不随时间而变化,如每年相同季节的气温构成的时间序列是相似的,就称此过程是平稳的。如下图所示,左边的图表示非稳定序列,右边的图表示稳定序列。随机过程的特征有均值、方差、协方差等。随机过程的平稳性决定了将要选择的模型的基本形式,不同类型的时间序列需要不同的分析方法。


在非平稳时间序列的分析方法里,根据导致时间序列非平稳的原因是否随机,可以将它们划分为确定性时序分析和随机时序分析两大类。确定性时序分析提取信息的方法主要有趋势拟合模型、季节调整模型、移动平均、指数平滑等方法。
随机时序分析提取信息的方法主要有ARIMA(autoregressive integrated moving average)及自回归条件异方差模型等。ARIMA是当前时间序列分析中最通用的方法,它是先通过差分运算,把长期趋势、固定周期等信息提取出来,将非平稳序列变为平稳序列后进行分析的过程。


下面重点介绍ARIMA及其相关的模型。

### 关于 UniApp 框架推荐资源与教程 #### 1. **Uniapp 官方文档** 官方文档是最权威的学习资料之一,涵盖了从基础概念到高级特性的全方位讲解。对于初学者来说,这是了解 UniApp 架构技术细节的最佳起点[^3]。 #### 2. **《Uniapp 从入门到精通:案例分析与最佳实践》** 该文章提供了系统的知识体系,帮助开发者掌握 Uniapp 的基础知识、实际应用以及开发过程中的最佳实践方法。它不仅适合新手快速上手,也能够为有经验的开发者提供深入的技术指导[^1]。 #### 3. **ThorUI-uniapp 开源项目教程** 这是一个专注于 UI 组件库设计实现的教学材料,基于 ThorUI 提供了一系列实用的功能模块。通过学习此开源项目的具体实现方式,可以更好地理解如何高效构建美观且一致的应用界面[^2]。 #### 4. **跨平台开发利器:UniApp 全面解析与实践指南** 这篇文章按照章节形式详细阐述了 UniApp 的各个方面,包括但不限于其工作原理、技术栈介绍、开发环境配置等内容,并附带丰富的实例演示来辅助说明理论知识点。 以下是几个重要的主题摘选: - **核心特性解析**:解释了跨端运行机制、底层架构组成及其主要功能特点。 - **开发实践指南**:给出了具体的页面编写样例代码,展示了不同设备间 API 调用的方法论。 - **性能优化建议**:针对启动时间缩短、图形绘制效率提升等方面提出了可行策略。 ```javascript // 示例代码片段展示条件编译语法 export default { methods: { showPlatform() { console.log(process.env.UNI_PLATFORM); // 输出当前平台名称 #ifdef APP-PLUS console.log('Running on App'); #endif #ifdef H5 console.log('Running on Web'); #endif } } } ``` #### 5. **其他补充资源** 除了上述提到的内容外,还有许多在线课程视频可供选择,比如 Bilibili 上的一些免费系列讲座;另外 GitHub GitCode 平台上也有不少优质的社区贡献作品值得借鉴研究。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值