HDU 2825 AC自动机+状压dp

本文介绍了一道经典的AC自动机DP问题,通过构建AC自动机并使用动态规划求解包含特定数量单词的字符串总数。文章详细解释了解题思路及核心代码实现。

题意:

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2825
给出m个单词,要构造出满足包含其中k个单词的字符串,字符只包括小写字母,问长度为n的这样的串有多少个。


思路:

经典的AC自动机dp问题,这里需要状态压缩保存构造过程中已经找到的单词状态,令dp[i][j][k]表示当前已经构造了i个字符,在ac自动机上跑到结点j,且单词状态为S情况下的方案数,很容易可以得到转移方程:
dp[i+1][next[j]][S|(1 << end[next[j]])]+=dp[i][j][S]
这样建立ac自动机然后dp即可,但是要注意一点,一个单词结点可能保存了多个单词的信息。需要在build过程中在每个结点上保存所有可能的状态。


代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MOD = 20090717;

struct ACauto {
    int next[110][26], fail[110], end[110];
    int root,sz;

    int newnode() {
        for (int i = 0; i < 26; i++)
            next[sz][i] = -1;
        end[sz++] = 0;
        return sz - 1;
    }

    void init() {
        sz = 0;
        root = newnode();
    }

    void insert(char *buf, int id) {
        int len = strlen(buf);
        int now = root;
        for (int i = 0; i < len; i++) {
            if (next[now][buf[i] - 'a'] == -1)
                next[now][buf[i] - 'a'] = newnode();
            now = next[now][buf[i] - 'a'];
        }
        end[now] |= (1 << id);
    }

    void build() {
        queue <int> Q;
        fail[root] = root;
        for (int i = 0; i < 26; i++) {
            if (next[root][i] == -1)
                next[root][i] = root;
            else {
                fail[next[root][i]] = root;
                Q.push(next[root][i]);
            }
        }
        while (!Q.empty()) {
            int now = Q.front();
            Q.pop();
            end[now] |= end[fail[now]];
    // 保存所有可能的状态,很关键
            for (int i = 0; i < 26; i++) {
                if (next[now][i] == -1)
                    next[now][i] = next[fail[now]][i];
                else {
                    fail[next[now][i]] = next[fail[now]][i];
                    Q.push(next[now][i]);
                }
            }
        }
    }

} ac;


LL dp[30][150][(1 << 10) + 10];

LL solve(int n, int m, int k) {
    for (int i = 0; i <= n; i++)
        for (int j = 0; j < ac.sz; j++)
            for (int S = 0; S < (1 << m); S++)
                dp[i][j][S] = 0;
    dp[0][0][0] = 1;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < ac.sz; j++) {
            for (int S = 0; S < (1 << m); S++) {
                if (dp[i][j][S] <= 0) continue;
                for (int t = 0; t < 26; t++) {
                    int ni = i + 1, nj = ac.next[j][t], nS = S | ac.end[nj];
                    dp[ni][nj][nS] = (dp[ni][nj][nS] + dp[i][j][S]) % MOD;
                }
            }
        }
    }
    LL res = 0;
    for (int S = 0; S < (1 << m); S++) {
        int cnt = 0;
        for (int i = 0; i < m; i++)
            if (S & (1 << i)) ++cnt;
        if (cnt >= k) {
            for (int i = 0; i < ac.sz; i++)
                res = (res + dp[n][i][S]) % MOD;
        }
    }
    return res;
}

char t[105];

int main() {
    //freopen("in.txt", "r", stdin);
    int n, m, k;
    while(scanf("%d%d%d", &n, &m, &k), n || m || k) {
        ac.init();
        for (int i = 1; i <= m; i++) {
            scanf("%s", t);
            ac.insert(t, i - 1);
        }
        ac.build();
        printf("%I64d\n", solve(n, m, k));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值