机器学习入门:监督学习与无监督学习

机器学习:

学习的过程就是举一反三的过程。
例如,中学阶段通过做大量的练习题,为的就是在高考解决问题。高考的题目一般来说是之前肯定没有遇到过的,但是这并不意味着这些题目我们无法解决。通过对之前所做过的练习题的分析,找到解题方法,同样可以解决陌生的题目。
机器学习其实就是将这一套方式运用到机器上,利用一些已知的数据来训练机器(做练习题),让机器自己分析这些数据,并找到内在联系(学习解题方法),从而对未知的数据进行预测判定等(做高考题)。

百度百科定义如下:

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。


监督学习:

监督学习(Supervised Learning),用上述例子来解释,就是高考前所做的练习题是有标准答案的。在学习的过程中,我们可以通过对照答案,来分析问题找出方法,下一次在面对没有答案的问题时,往往也可以正确地解决。
对于机器学习来说,监督学习就是训练数据既有特征(feature)又有标签(label),通过训练,让机器可以自己找到特征和标签之间的联系,在面对只有特征没有标签的数据时,可以判断出标签。

监督学习分为两大类:

  • 回归分析(Regression Analysis):如果拿二维平面来说,就是对已经存在的点(训练数据)进行分析,拟合出适当的函数模型y=f(x),这里y就是数据的标签,而对于一个新的自变量x,通过这个函数模型得到标签y。 -
  • 分类(Classification):训练数据是特征向量与其对应的标签,同样要通过分析特征向量,对于一个新的向量得到其标签。
    回归分析与分类区别其实就是数据的区别就是回归是针对连续数据,分类是针对离散数据。

非监督学习:

与监督学习相对的,是非监督学习(Unsupervised Learning)。
再举高中做练习题的例子,就是所做的练习题没有标准答案,换句话说,你也不知道自己做的是否正确,没有参照,想想就觉得是一件很难的事情。
但是就算不知道答案,我们还是可以大致的将语文,数学,英语这些题目分开,因为这些问题内在还是具有一定的联系。
这种问题在机器学习领域中就被称作聚类(Clustering),相对于监督学习,无监督学习显然难度要更大,在只有特征没有标签的训练数据集中,通过数据之间的内在联系和相似性将他们分成若干类。
Google新闻按照内容结构的不同分成财经,娱乐,体育等不同的标签,这就是一种聚类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值