[转]【啊哈!算法】算法11:堆——神奇的优先队列(上)--作者:ahalei

转载 2016年08月29日 17:19:42

堆是什么?是一种特殊的完全二叉树,就像下面这棵树一样。

        有没有发现这棵二叉树有一个特点,就是所有父结点都比子结点要小(注意:圆圈里面的数是值,圆圈上面的数是这个结点的编号,此规定仅适用于本节)。符合这样特点的完全二叉树我们称为最小堆。反之,如果所有父结点都比子结点要大,这样的完全二叉树称为最大堆。那这一特性究竟有什么用呢?

        假如有14个数分别是995367221746122192528192。请找出这14个数中最小的数,请问怎么办呢?最简单的方法就是将这14个数从头到尾依次扫一遍,用一个循环就可以解决。这种方法的时间复杂度是O(14)也就是O(N)

1
2
3
4
for(i=1;i<=14;i++)
{
    if(a[ i]<min)    min=a[ i];
}

        现在我们需要删除其中最小的数,并增加一个新数23,再次求这14个数中最小的一个数。请问该怎么办呢?只能重新扫描所有的数,才能找到新的最小的数,这个时间复杂度也是O(N)。假如现在有14次这样的操作(删除最小的数后并添加一个新数)。那么整个时间复杂度就是O(142)O(N2)。那有没有更好的方法呢?堆这个特殊的结构恰好能够很好地解决这个问题。

        首先我们先把这个14个数按照最小堆的要求(就是所有父结点都比子结点要小)放入一棵完全二叉树,就像下面这棵树一样。

        很显然最小的数就在堆顶,假设存储这个堆的数组叫做h的话,最小数就是h[ 1]。接下来,我们将堆顶的数删除,并将新增加的数23放到堆顶。显然加了新数后已经不符合最小堆的特性,我们需要将新增加的数调整到合适的位置。那如何调整呢?

        向下调整!我们需要将这个数与它的两个儿子25比较,并选择较小一个与它交换,交换之后如下。

        我们发现此时还是不符合最小堆的特性,因此还需要继续向下调整。于是继续将23与它的两个儿子127比较,并选择较小一个交换,交换之后如下。

        到此,还是不符合最小堆的特性,仍需要继续向下调整直到符合最小堆的特性为止。

        我们发现现在已经符合最小堆的特性了。综上所述,当新增加一个数被放置到堆顶时,如果此时不符合最小堆的特性,则将需要将这个数向下调整,直到找到合适的位置为止,使其重新符合最小堆的特性。

 

 

        向下调整的代码如下。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
void siftdown(int i) //传入一个需要向下调整的结点编号i,这里传入1,即从堆的顶点开始向下调整 
{
    int t,flag=0;//flag用来标记是否需要继续向下调整 
    //当i结点有儿子的时候(其实是至少有左儿子的情况下)并且有需要继续调整的时候循环窒执行
    while( i*2<=n && flag==0 )
    {        
        //首先判断他和他左儿子的关系,并用t记录值较小的结点编号 
        if( h[ i] > h[ i*2] )
            t=i*2;
        else
            t=i; 
        //如果他有右儿子的情况下,再对右儿子进行讨论 
        if(i*2+1 <= n)
        {
            //如果右儿子的值更小,更新较小的结点编号  
            if(h[ t] > h[ i*2+1])
                t=i*2+1;
        }
        //如果发现最小的结点编号不是自己,说明子结点中有比父结点更小的  
        if(t!=i)
        {
            swap(t,i);//交换它们,注意swap函数需要自己来写
            i=t;//更新i为刚才与它交换的儿子结点的编号,便于接下来继续向下调整 
        }
        else
            flag=1;//则否说明当前的父结点已经比两个子结点都要小了,不需要在进行调整了 
    }
}


 

        我们刚才在对23进行调整的时候,竟然只进行了3次比较,就重新恢复了最小堆的特性。现在最小的数依然在堆顶为2。之前那种从头到尾扫描的方法需要14次比较,现在只需要3次就够了。现在每次删除最小的数并新增一个数,并求当前最小数的时间复杂度是O(3),这恰好是O(log214)O(log2N)简写为O(logN)。假如现在有1亿个数(即N=1亿),进行1亿次删除最小数并新增一个数的操作,使用原来扫描的方法计算机需要运行大约1亿的平方次,而现在只需要1亿*log1亿次,即27亿次。假设计算机每秒钟可以运行10亿次,那原来则需要一千万秒大约115天!而现在只要2.7秒。是不是很神奇,再次感受到算法的伟大了吧。

        说到这里,如果只是想新增一个值,而不是删除最小值又该如何操作呢?即如何在原有的堆上直接插入一个新元素呢?只需要直接将新元素插入到末尾,再根据情况判断新元素是否需要上移,直到满足堆的特性为止。如果堆的大小为N(即有N个元素),那么插入一个新元素所需要的时间也是O(logN)。例如我们现在要新增一个数3

 

 

        先将3与它的父结点25比较,发现比父结点小,为了维护最小堆的特性,需要与父结点的值进行交换。交换之后发现还是要比它此时的父结点5小,因此需要再次与父结点交换。至此又重新满足了最小堆的特性。向上调整完毕后如下。

        向上调整的代码如下。

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
void siftup(int i) //传入一个需要向上调整的结点编号i
{
    int flag=0; //用来标记是否需要继续向上调整
    if(i==1)  return//如果是堆顶,就返回,不需要调整了    
    //不在堆顶 并且 当前结点i的值比父结点小的时候继续向上调整 
    while(i!=1 && flag==0)
    {
        //判断是否比父结点的小 
        if(h[ i]<h[ i/2])
            swap(i,i/2);//交换他和他爸爸的位置 
        else
            flag=1;//表示已经不需要调整了,当前结点的值比父结点的值要大 
        i=i/2; //这句话很重要,更新编号i为它父结点的编号,从而便于下一次继续向上调整 
    }
}


        说了半天,我们忽略一个很重要的问题!就是如何建立这个堆。我们周一接着说。

        BTW,《啊哈!算法》系列,坐在马桶上都能读懂的算法入门书,已经整理出版,下周一将是最后一次在线更新啦(把堆说完)。各位喜欢《啊哈!算法》的朋友要去买一本搜藏哦 这年头写个东西不容易,多谢大家支持啦,当当网购买链接  http://product.dangdang.com/23490849.html

 

        买了的朋友记得来啥单,还可以得到《啊哈!算法》的T恤哦~~~ http://www.ahalei.com/thread-4969-1-1.html

【啊哈!算法】算法12:堆——神奇的优先队列(下)

接着上一Pa说。就是如何建立这个堆呢。可以从空的堆开始,然后依次往堆中插入每一个元素,直到所有数都被插入(转移到堆中为止)。因为插入第i个元素的所用的时间是O(log i),所以插入所有元素的整体...
  • ahalei
  • ahalei
  • 2014年06月17日 09:35
  • 2316

【啊哈!算法】算法11:堆——神奇的优先队列(上)

堆是什么?是一种特殊的完全二叉树,就像下面这棵树一样。         有没有发现这棵二叉树有一个特点,就是所有父结点都比子结点要小(注意:圆圈里面的数是值,圆圈上面的数是这个结点的编号,此规定...
  • ahalei
  • ahalei
  • 2014年06月12日 11:28
  • 1546

[转]【坐在马桶上看算法】算法12:堆——神奇的优先队列(下)--作者:ahalei

接着上一Pa说。就是如何建立这个堆呢。可以从空的堆开始,然后依次往堆中插入每一个元素,直到所有数都被插入(转移到堆中为止)。因为插入第i个元素的所用的时间是O(log i),所以插入所有元素的整体...
  • baidu_35327237
  • baidu_35327237
  • 2016年08月29日 17:21
  • 274

算法(第四版)学习笔记之java实现基于堆的优先队列

一台电脑之所以能同时运行多个应用程序的时候,是通过为每个应用程序的事件分配一个优先级,并总是处理下一个优先级最高的事件来实现的。在这种情况下,一个合适的数据结构应该支持两种操作:删除最大元素和插入元素...
  • l243225530
  • l243225530
  • 2015年07月25日 17:49
  • 838

【每日算法】堆排序&优先队列

堆排序(heapsort)的运行时间为O(n logn),是一种原地排序算法,是不稳定的排序算法。堆基本介绍先直观感受一下,下面就是一个堆:16 7 3 20 17 8什么??上面不就一个数组吗……?...
  • jiange_zh
  • jiange_zh
  • 2016年02月19日 23:42
  • 2738

《算法(第四版)》排序-----优先队列

在实际应用中,我们常常不一定要求整个数组全部有序,或者不需要一次就将它们排序,可能只需要当前数组的键值最大的元素或最小的元素,这时就类似于总在处理下一个优先级最高的元素,在这种情况下一个合适的数据结构...
  • kwang0131
  • kwang0131
  • 2016年04月08日 22:02
  • 533

啊哈算法-----快速排序

上一节的冒泡排序可以说是我们学习第一个真正的排序算法,并且解决了桶排序浪费空间的问题,但在算法的执行效率上却牺牲了很多,它的时间复杂度达到了O(N2)。假如我们的计算机每秒钟可以运行10亿次,那么对1...
  • binyao02123202
  • binyao02123202
  • 2014年02月27日 14:59
  • 4232

《啊哈!算法》.啊哈磊.扫描版pdf

下载地址:网盘下载 内容简介  · · · · · · 这不过是一本有趣的算法书而已。和别的算法书比较,如果硬要说它有什么特点的话,那就是你能看懂它。 这...
  • cf406061841
  • cf406061841
  • 2017年05月27日 18:54
  • 2396

《算法(第四版)》排序-----堆排序

1.什么是堆? 讲堆排序之前,先了解一下什么是堆。堆其实相当于一种数据结构,它的本质是一种数组对象,但是它里面的内同又是一颗完全二叉树结构,它的特点是父节点的值大于(或小于)两个子节点的值,常常用于优...
  • kwang0131
  • kwang0131
  • 2016年04月09日 12:00
  • 453

算法笔记(堆实现的最大优先队列)

采用最大堆实现的优先队列,QueueElement是队列元素类,包含一个卫星数据成员和一个权重Key值: public class QueueElement { publi...
  • hawksoft
  • hawksoft
  • 2011年11月17日 20:20
  • 1474
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[转]【啊哈!算法】算法11:堆——神奇的优先队列(上)--作者:ahalei
举报原因:
原因补充:

(最多只允许输入30个字)