堆的构建算法具有线性时间复杂度O(n):解释与证明

本文探讨了BUILD-HEAP算法,从无序数组构建堆的过程,指出其时间复杂度为O(n)。通过引理和数学归纳法证明,在含有n个元素的堆中,大部分结点的高度较小,从而得出更精确的时间复杂度分析。
摘要由CSDN通过智能技术生成

堆是一种非常有用的数据结构类型,它可以用作执行优先级队列的存储结构,也可以用来实现堆排序。BUILD-HEAP算法(即建堆算法)的功能是从无序的输入数组中构建一个堆(最大堆或者最小堆),它是具有线性时间复杂度O(n)的算法(这个知识点在《算法导论》中也有被提及)。本文将讨论如何解释及证明这个结论。

首先来回顾一下BUILD-HEAP算法,下面是算法的流程:

BUILD-HEAP(A) 
    heapsize := size(A); 
    for i := downto 1 
        do HEAPIFY(A, i); 
    end for 
END

因为在【1】或【2】中都有介绍过这个算法,此处将不再重复,本文的重点将放在对其时间复杂度的分析上。

直觉上,BUILD-HEAP算法的时间复杂度应该是O(n\log n),因为HEAPIFY算法的复杂度是

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值