建堆O(n)时间复杂度证明

建堆复杂度先考虑满二叉树,计算完全二叉树建堆复杂度基本相同。
对满二叉树而言,第i层(根为第0层)有2^i个节点。由于建堆过程自底向上,以交换作为主要操作,因此第i层任意节点在最不利情况下,需要经过(n-i)次交换操作才能完成以该节点为堆根节点的建堆过程。因此,时间复杂度计算如下:
T(n) = 2^0 * (n - 0) + 2^1 * (n - 1) + … + 2^n * (n - n) = sum((n - i) * 2^i)
采用错位相减法:

原式乘2得:
T(n) * 2 = 2^1 * (n - 0) + 2^2 * (n - 1) + … + 2^(n+1) * (n - n)
= sum((n - i) * 2^(i+1))
原式如下:
T(n) = 2^0 * (n - 0) + 2^1 * (n - 1) + … + 2^n * (n - n)
= sum((n - i) * 2^i)
相减得:
2T(n) - T(n) = -n + 2^1 + 2^2 + … + 2^n = 2 * (1 - 2^n) / (1 - 2) - n
= 2^(n+1) - 2 - n

上面推导中,n为层数编号(自0层根节点开始)。故总节点数为(1 + 2 + 4 + … + 2^n) = 2^(n+1) - 1。渐进时,忽略减1取N = 2^(n+1)。
T(N) = 2^(n+1) - n - 2 = N * (1 - logN / N - 2 / N) ≈ N
故时间复杂度为O(N),得证。

树状数组(Fenwick Tree)是一种高效的数据结构,用于支持单点修改和区间查询的操作。它的时间复杂度为 $O(\log n)$。 下面给出树状数组时间复杂度证明: 首先,我们需要知道树状数组的实现过程。树状数组是通过对原数组进行预处理,构造出一棵二叉树来实现的。树状数组中,每个节点维护的是原数组中一定范围内元素的和。具体实现过程如下: 1. 初始化:将原数组每个元素复制到树状数组对应的位置上。 2. 单点修改:若原数组中第 i 个元素的值增加了 x,那么需要对树状数组中所有包含第 i 个位置的节点的值都加上 x。 3. 区间查询:对于原数组的区间 [l, r],需要求出其和。可以通过查询树状数组中编号为 r 和编号为 l-1 的节点的值的差来得到。 接下来,我们来证明树状数组的时间复杂度是 $O(\log n)$。 对于单点修改操作,我们需要对包含该节点的所有节点进行修改,节点的数量最多是 $\log n$,因为树状数组的深度最多为 $\log n$。每次修改的时间复杂度是 $O(1)$,所以单点修改操作的总时间复杂度是 $O(\log n)$。 对于区间查询操作,我们需要查询两个节点的值的差,节点的数量最多也是 $\log n$。每次查询的时间复杂度是 $O(1)$,所以区间查询操作的总时间复杂度也是 $O(\log n)$。 因此,树状数组的时间复杂度是 $O(\log n)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值