马尔科夫链蒙特卡洛(MCMC)

本文介绍了马尔科夫链蒙特卡洛(MCMC)方法在以贝叶斯方法为基础的机器学习中的应用,特别是在处理复杂后验分布的积分计算中。通过回顾蒙特卡洛积分、采样方法,特别是重要性采样,阐述了MCMC如何解决采样困难的问题。此外,讨论了马尔科夫链的平稳分布和详细平衡条件,为理解MCMC算法的基础概念奠定了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在以贝叶斯方法为基础的机器学习技术中,通常需要计算后验概率,然后通过最大后验概率(MAP)等方法进行参数推断和决策。然而,在很多时候,后验分布的形式可能非常复杂,这个时候寻找其中的最大后验估计或者对后验概率进行积分等计算往往非常困难,此时可以通过采样的方法来求解。

作为本系列文章的组成部分,也作为你阅读本文所必须的预备知识,希望各位读者确认已经对如下文章所谈之话题了然于心:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值