1、同余(合同式)
转载请注明http://blog.csdn.net/boksic 如有疑问欢迎留言
两个整数a,b,若它们除以正整数m所得的余数相等,则称a,b对于模m同余
记作
例如1≡13 (mod 12),可以理解为时钟上1点和13点的指针位置相同
重要性质

例如1^5=1,13 ^5=371293=30941*12+1
即1^5≡1≡13 ^5(mod 12)
2、欧拉函数(Euler's totient function)
欧拉函数 φ(n)是少于或等于n的数中与n互质的数的数目,例如φ(9) = 6,因为比9小的数中与9互质的有1, 2, 4, 5, 7,8六个数,所以9的欧拉函数为6。
计算方法:
将n分解为质数相乘的形式
,每个pi

本文详细介绍了RSA算法的基础,包括同余理论、欧拉函数、费马小定理与欧拉定理,以及扩展欧几里得算法。通过这些数学原理,阐述了密钥生成、加密和解密的过程,并提供了具体的实现步骤。
最低0.47元/天 解锁文章
1283

被折叠的 条评论
为什么被折叠?



