非线性优化整理-3.Levenberg-Marquardt法(LM法)

LM法(Levenberg-Marquardt法)结合了高斯牛顿法和梯度下降法的优点,通过阻尼因子μ调节算法特性。在LM法中,μ的大小影响算法行为,当μ较大时退化为梯度下降法,而μ较小时接近高斯牛顿法。算法的收敛条件包括残差g过小、参数变化小或达到最大迭代次数。其迭代策略涉及矩阵求逆,适合大多数非线性优化问题,但对参数的选择敏感。此外,LM法可以视为信赖域法的一种形式。
摘要由CSDN通过智能技术生成

注意到关于LM法网上大部份资料内容比较混乱,主要是因为LM法是可以从两个不同的视角看的。一种是看作介于高斯牛顿和梯度下降法之间的一种算法,另一种是作为一种信赖域的算法来看,而两种视角下虽然最后结论比较相似,但公式推导的思路差别会比较大。
从历史上讲,LM法最初作为高斯牛顿法的改良而被提出,随后才有了信赖域法上应用。这里先从高斯牛顿法/梯度下降法混合的视角下来进行推导。

基础

先来回顾一下高斯牛顿法的几个关键点(可参照非线性优化整理-2.高斯-牛顿法

高斯牛顿法的迭代公式为

xn+1=xn[JTfJf]1JTff(xn) x n + 1 = x n − [ J f T J f ] − 1 J f T f ( x n )

这是根据目标函数 F(x) F ( x ) 按以下二阶近似所得到的:
F(x+h)F(x)+F(x)h+12hTHFhF(x)+JTffh+12hTJTfJfh F ( x + h ) ≈ F ( x ) + ∇ F ( x ) h + 1 2 h T H F h ≈ F ( x ) + J f T f h + 1 2 h T J f T J f h

我们可以定义以该种方式近似 F(x+h) F ( x + h ) 的结果为 L(h) L ( h )
L(h)F(x)+JTffh+12hTJTfJfh L ( h ) ≡ F ( x ) + J f T f h + 1 2 h T J f T J f h

LM法

高斯牛顿法具有收敛快速但对初始点位置敏感的特点,梯度下降法则相反。
而LM法,也称作阻尼最小二乘法(Damped Least-squares),则结合了二者的特点,引入了阻尼因子 μ μ 来调节算法的特性。
原始版LM法的迭代公式为

xn+1=xn[JTfJf+μI]1JTff(xn)
LM,全称为Levenberg-Marquard算,它可用于解决非线性最小二乘问题,多用于曲线拟合等场合。 LM的实现并不算难,它的关键是用模型函数 f 对待估参数向量 p 在其邻域内做线性近似,忽略掉二阶以上的导数项,从而转化为线性最小二乘问题,它具有收敛速度快等优点。LM属于一种“信赖域”——所谓的信赖域,此处稍微解释一下:在最优化中,都是要求一个函数的极小值,每一步迭代中,都要求目标函数值是下降的,而信赖域,顾名思义,就是从初始点开始,先假设一个可以信赖的最大位移 s ,然后在以当前点为中心,以 s 为半径的区域内,通过寻找目标函数的一个近似函数(二次的)的最优点,来求解得到真正的位移。在得到了位移之后,再计算目标函数值,如果其使目标函数值的下降满足了一定条件,那么就说明这个位移是可靠的,则继续按此规则迭代计算下去;如果其不能使目标函数值的下降满足一定的条件,则应减小信赖域的范围,再重新求解。 事实上,你从所有可以找到的资料里看到的LM的说明,都可以找到类似于“如果目标函数值增大,则调整某系数再继续求解;如果目标函数值减小,则调整某系数再继续求解”的迭代过程,这种过程与上面所说的信赖域是非常相似的,所以说LM是一种信赖域
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值