分类算法之朴素贝叶斯(Naive Bayes)和贝叶斯网络(Bayesian Networks)

本文主要介绍了两种基于贝叶斯定理的分类算法——朴素贝叶斯和贝叶斯网络。首先概述了分类算法的重要性,接着详细阐述了朴素贝叶斯算法的基本原理和应用,然后探讨了更为复杂的贝叶斯网络及其结构与推理过程。通过对比分析,总结了两者的异同及适用场景。
摘要由CSDN通过智能技术生成
  • 1.概述
大家都知道贝叶斯定理,一个简单的条件概率求解公式:
P(A|B) = P(A^B) / P(B) = P(A)*P(B|A) / P(B)
形式简单,也容易理解。它的好处在于可以将条件概率P(A|B)通过公式转换为若干已知先验概率(P(A),P(B))和条件概率(P(B|A))的组合,而等式右边可通过对样本的统计分析得到,从而达到求解P(A|B)的目的。

贝叶斯分类方法是基于贝叶斯定理的,这里要介绍的朴素贝叶斯和贝叶斯网络,它们可看作是两种适用于不同情形下的分类方法。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值