自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(292)
  • 收藏
  • 关注

原创 模型参数量计算与效率分析

    介绍如何计算基于 Transformer 架构的大语言模型的参数数量,并给出训练模型时所需要的运算量、训练时间和显存开销估计,方便可以估算训练所需要的时间、GPU 显存等计算资源开销。    由于当前主流的大模型普遍采用因果解码器架构,因此下面以 LLaMALLaMALLaMA 模型为范例,深入剖析其参数数量计算方式。对于其他模型,其参数量计算算法可参照此方法计算。首先,假设词表大小为 VVV,模型包含 LLL 层解码器,中间状态的维度大小为 HHH,前馈网络层的中间状态维度大小为 H′H'H′。我

2024-07-22 17:15:09 87

原创 大模型可扩展的训练技术

对于每个 GPU,在模型传播到某一层时,其他层的模型和优化器参数并不参数计算,这导致了严重的显存冗余现象,同时也限制了每个 GPU 可以支持的前向传播数据量,降低了训练效率。以上图为例,1 号 GPU 在前向传播后需要等待 2 号 GPU反向传播的结果才能进行梯度传播,因此整个流程是“1 号前向-2 号前向-2 号反向-1 号反向”的串行操作,大大降低了 GPU 的利用率。在流水线并行中使用了梯度累积后,1 号卡前向传播完第一个批次后,便可以不用等待,继续传播第二个和后续的批次,从而提高了流水线的效率。

2024-07-22 15:17:06 6

原创 ChatRule: Mining Logical Rules with Large Language Models for Knowledge Graph Reasoning

逻辑规则对于揭示关系之间的逻辑联系至关重要,这可以提高推理性能并在知识图谱(KG)上提供可解释的结果。尽管人们已经做出了许多努力来挖掘知识图谱上有意义的逻辑规则,但现有的方法存在对规则空间的计算密集型搜索以及缺乏大规模知识图谱的可扩展性的问题。此外,他们经常忽略关系的语义,而这对于揭示逻辑联系至关重要。近年来,大型语言模型(LLM)由于其新兴能力和泛化性,在自然语言处理和各种应用领域表现出了令人印象深刻的性能。

2024-07-20 20:54:04 1336

原创 GOLLIE : ANNOTATION GUIDELINES IMPROVE ZERO-SHOT INFORMATION-EXTRACTION

大型语言模型 (LLM) 与指令调优相结合,在泛化到未见过的任务时取得了重大进展。然而,它们在信息提取(IE)方面不太成功,落后于特定任务模型。通常,IE 任务的特点是复杂的注释指南,这些指南描述任务并向人类提供示例。以前利用此类信息的尝试都失败了,即使是最大的模型也是如此,因为它们无法遵循开箱即用的指南。在本文中,我们提出了 GoLLIE(IE 大型语言模型指南),该模型能够通过微调以符合注释指南,从而改进未见过的 IE 任务的零样本结果。

2024-07-20 20:35:33 732

原创 大模型预训练优化参数设置

在大模型预训练中,通常将批次大小(Batch Size)设置为较大的数值,例如1M 到 4M 个词元,从而提高训练的稳定性和吞吐量。在模型训练的初始阶段,由于参数是随机初始化的,梯度通常也比较大,因此需要使用较小的学习率使得训练较为稳定。此外,谷歌的研究者提出了 Adafactor优化器,它是 Adam 优化器的一个变种,通过引入了特殊设计可以在训练过程中节省显存,被用于 PaLM 和 T5 等大语言模型的训练。常见的衰减策略有线性衰减,余弦衰减,平方根倒数衰减,它们的学习率变化如下图所示。

2024-07-18 20:48:25 887

原创 模型预训练任务

然而,在模型预训练阶段的损失函数中,由于并未将所有词元的损失都纳入计算,当使用相同规模的数据集进行训练时,采用前缀语言建模训练的模型在性能上通常会稍逊于使用标准语言建模任务训练的模型。混合去噪器,又称 UL2 损失,通过将语言建模和去噪自编码的目标均视为不同类型的去噪任务,对于预训练任务进行了统一建模。除了传统的语言建模任务外,去噪自编码任务是另一种常见的语言模型预训练任务,广泛应用于 BERT、T5 等预训练语言模型中。,语言建模任务的目标定义为词元的预测任务:基于序列中当前位置之前的词元序列。

2024-07-18 20:39:15 533

原创 知识图谱查询语言

实际上,BGP查询相当于一个带有变量的查询图,查询过程是在数据图中寻找与查询图映射匹配的所有子图,等价于图论中的子图同构(Subgraph Isomorphism)或子图同态 (Subgraph Homomorphism)问题,所以也将BGP查询称为子图匹配查询。SPARQL 是W3C 制定的RDF 图数据的标准查询语言。说明:MATCH关键字指明需要匹配的模式,这里将节点分为了程序员和项目两类,p作为查询变量会依次绑定到每个类型为Programmer的节点,RETURN关键字返回变量p的值作为查询结果。

2024-07-17 20:54:48 91

原创 知识图谱数据模型

例如在下图中,引入节点ex:participate代表三元组(ex:zhangsan,参加,ex:graphdb),该节点通过RDF内置 属性rdf:subject、rdf:predicate和rdf:object分别与代表的三元组的主语、 谓语和宾语建立起联系,这样三元组(ex:participate,权重,0.4)就实现了为原三元组增加边属性的效果。上图的每个节点和每条边均有id。遵照属性图的要素,节点4的出边集合为{边10,边11},入边集合为{边8},属性集合为{姓名=“王五”,年龄=32};

2024-07-17 20:28:35 577

原创 GPT-4和ChatGPT的高级技巧---微调

微调除了文中提到的确保模型生成内容更符合目标领域的特定语言模式、词汇和语气,还有一个优势:你可以通过微调缩短每一次提示中重复的指令或提示词以节省成本或降低延迟,模型会记住通过微调获得的内置指令。开发人员可以为应用程序选择最合适的模型:较小的模型(ada和babbage)可能在简单任务或资源有限的应用程序中更快且更具成本效益,较大的模型 curie 和davinci)则提供了更强的语言处理和生成能力,从而适用于需要更高准确性的复杂任务。需要强调的是,微调后的模型是新模型它位于OpenAl的服务器上。

2024-07-15 20:06:33 452

原创 GPT-4和ChatGPT的高级技巧---提示工程

    在深入研究提示工程之前,让我们简要回顾聊天模型的chat_completion 函数,因为本节将经常用到它。为了使代码更加紧凑,我们将该函数定义如下:    该函数接收提示词并在终端中显示补全结果。model和temperature是两个可选特征,分别被默认设置为gpt-4和0。为了说明提示工程的原理,我们将再次使用示例文本“As Descartes said,I think therefore”(正如笛卡儿所说,我思故)。如果将此文本输入GPT-4 那么模型自然会通过迭代式地添加最可能出现的标

2024-07-15 19:38:58 201

原创 知识图谱数据库基本知识

    随着知识图谱规模的日益增长,数据管理愈加重要。一方面,以文件形式保存的知识图谱显然无法满足用户的查询、检索、推理、分析及各种应用需求;另一方面,传统数据库的关系模型与知识图谱的图模型之间存在显著差异,关系数据库无法有效地管理大规模知识图谱数据。为了更好地进行三元组数据的存储,语义万维网领域发展出专门存储RDF数据的三元组库;数据库领域发展出用于管理属性图的图数据库。虽然目前没有一种数据库系统被公认为具有主导地位的知识图谱数据库,但可以预见,随着三元组库和图数据库的相互融合发展,知识图谱的存储和数据管

2024-07-13 20:54:32 233

原创 开源工具实践:基于Protégé的本体知识建模

本节使用Protégé演示如何进行知识建模。本实践相关工具、实验数据及操作说明由OpenKG提供,地址为http:/openkg.cn。Protégé软件是斯坦福大学医学院生物信息研究中心基于Java语言开发的本体编辑和本体开发工具,也是基于知识的编辑器,属于开放源代码软件。该软件主要用于语义网中本体的构建,是语义网中本体构建的核心开发工具,本书采用的版本为5.2.0版本。Protégé有以下特点:Protégé是一组自由开源的工具软件,用于构建域模型与基于知识的本体化应用程序。

2024-07-13 20:10:14 45

原创 使用GPT-4和ChatGPT构建应用项目

LLM已被证明在总结文本方面表现出色。在大多数情况下,LLM能够提取文本的核心思想并重新表达,使生成的摘要流畅且清晰。文本摘要在许多情况下很有用,举例如下。媒体监测:快速了解重要信息,避免信息过载。趋势观察:生成技术新闻的摘要或对学术论文进行分组并生成有用的摘要。客户支持:生成文档概述,避免客户被大量的信息所淹没。电子邮件浏览:突出显示最重要的信息,并防止电子邮件过载。在本项目中,我们将为YouTube视频生成摘要。你可能会感到惊讶:如何将视频提供给GPT-4或ChatGPT呢?

2024-07-11 11:09:57 1917 1

原创 使用 GPT-4 和 ChatGPT 构建应用程序

要开发基于LLM的应用程序,核心是将LLM与OpenAI API集成。这需要开发人员仔细管理API密钥,考虑数据安全和数据隐私,并降低集成LLM的服务受特定攻击的风险。你必须拥有一个API密钥才能使用OpenAl服务。由于如何管理API密钥将影响应用程序设计,因此这是一个需要从一开始就关注的话题。本文将展示如何管理用于LLM驱动型应用程序开发的API密钥。我们无法详细介绍每一种API密钥管理方案,因为它们与应用程序的类型密切相关:它是一个独立的解决方案吗?是Chrome插件还是Web服务器?

2024-07-11 09:43:20 740

原创 TECHGPT-2.0: A LARGE LANGUAGE MODEL PROJECT TO SOLVE THE TASK OF KNOWLEDGE GRAPH CONSTRUCTION

大型语言模型在不同的自然语言处理任务中表现出强大的性能。本报告介绍了TechGPT-2.0项目,该项目旨在增强大型语言模型在知识图谱构建任务中的能力,包括NLP应用中的命名实体识别(NER)和关系三重提取(RTE)任务。此外,它还可以作为中国开源模型社区研究的法学硕士。我们提供了两个7B大型语言模型权重和一个专门用于处理冗长文本的QLoRA权重。值得注意的是,TechGPT-2.0是在华为Ascend服务器上进行培训的。

2024-07-10 21:08:43 1114

原创 基于 BERT 的非结构化领域文本知识抽取

随着知识图谱技术的发展和商业应用的普及,从各类非结构化领域文本中提取出知识图谱实体及关系数据的需求日益增加。这使得针对领域文本的自动化知识抽取颇有意义。本文提出了一种基于 BERT 的知识抽取方法,用于从非结构化的特定领域文本(例如保险行业的保险条款)中自动抽取知识点,以达到在构建知识图谱的过程中节约人力的目的。

2024-07-10 20:42:59 876

原创 新型模型架构(参数化状态空间模型、状态空间模型变种)

然而,Transformer 的自注意力机制在计算每个词元时都需要利用到序列中所有词元的信息,这导致计算和存储复杂度随输入序列长度的平方级别增长。Mamba是一种状态空间模型的变种,主要思想是在状态空间模型的状态更新中引入了基于当前输入的信息选择(Selection)机制,来确定当前时刻状态如何从前一时刻状态以及当前输入中提取信息,从而提升其在语言建模上的性能。在循环计算的时候,状态空间模型不需要和 Transformer 一样对前面所有时刻的状态进行访问,而是仅仅需要前一个时刻的状态。

2024-07-08 14:54:17 67

原创 长上下文模型(扩展位置编码、调整上下文窗口、长文本数据、)

    在实际应用中,大语言模型对于长文本数据的处理需求日益凸显,尤其在长文档分析、多轮对话、故事创作等场景下。在这些情况下,模型需要处理的文本的长度常常超出预定义上下文窗口大小。例如,LLaMA-2 的上下文窗口限制为 4,096个词元。为了支持长文本处理,多家机构均已推出面向具有超长上下文窗口的大语言模型或 API。例如,OpenAI 发布了支持 128K 上下文窗口的 GPT-4 Turbo,而Anthropic 则推出了具有 200K 上下文窗口的 Claude-2.1。给定一个预训练后的大语言模型

2024-07-08 14:23:40 135

原创 知识图谱嵌入

如上所述,知识图谱的嵌入方法可以提高计算的效率,增加下游应用的多样性,并可以作为预训练,为下游模型提供语义支持,所以对其展开的研究具有很大的应用价值和前景。类似于词向量,经典的知识图谱嵌入模型TransE的设计思想就是,如果一个三元组(hr,t)成立,那么它们需要符合h+rt关系,例如:Vec(Rome)+vec(is-capital-of)≈vec(ltaly)所以,在知识图谱嵌入的学习过程中,不同的模型从不同的角度把相应的语义信息嵌入知识图谱的向量表示中,如下图所示。S(ga)是被设计出来的得分函数。

2024-07-06 10:45:17 340

原创 知识图谱的向量表示方法

在训练好的词向量中可以发现一些词的词向量在连续空间中的一些关系,如下图所示。通过两对在语义上关系相同的词向量相减可以得出相近的结果,可以猜想出Roma和 ltaly的词向量通过简单的相减运算,得到了一种类似is-capital-of关系的连续向量,而这种关系的向量可以近似地平移到其他具有类似关系的两个词向量之间。具体的方法是先收集所有文本的可见词汇并组成一个词典,再对所有词进行编号,对于每个文本,可以使用一个表示每个词出现次数的向量来表示,该向量的每一个维度的数字表示该维度所指代的词在该文本中出现的次数。

2024-07-06 09:59:33 71

原创 大语言模型融合知识图谱的问答系统研究

问答系统(Question Answering,QA)能够自动回答用户提出的自然语言问题,是信息检索和自然语言处理的交叉研究方向,将知识图谱(Knowledge Graph,KG)与问答系统融合,正确理解用户语义是一大挑战。虽然知识图谱问答能够通过对问题进行分析理解,最终获取答案,但面对自然语言的灵活性与模糊性,如何处理复杂问题的语义信息、如何提高复杂推理问答的高效性仍是研究难点。

2024-07-04 19:42:27 866

原创 FOODGPT: A LARGE LANGUAGE MODEL IN FOOD TESTING DOMAIN WITH INCREMENTAL PRE-TRAINING AND KNOW...

目前,特定领域的大型语言模型的构建是通过在基础模型上进行微调来完成的。有些模型还包含知识库,无需预先训练。这是因为基础模型在预训练过程中已经包含了特定领域的知识。我们构建了一个用于食品测试的大语言模型。与上述方法不同,该域中的大量数据以域标准文档的扫描格式存在。此外,还存在大量未经训练的结构化知识。因此,我们引入了增量预训练步骤,将这些知识注入到大语言模型中。在本文中,我们提出了一种在增量预训练中处理结构化知识和扫描文档的方法。

2024-07-04 17:15:13 1052

原创 常见开放域知迟图谱的知迟表示方法

ConceptNets5中的关系包含21个预定义的、多语言通用的关系,如lsA、UsedFor等,以及从自然语言文本中抽取的更加接近自然语言描述的非形式化的关系,如on top of,caused by等。其中,可以是一个item,如Q49,或者一个Property,如P234。这个Object的一个type是“/government/us_president”,并有一个称为“/government/us_.president/presidency_.number'"的Property,其数值是“44”。

2024-07-02 10:14:31 35

原创 知识图谱查询语言的表示

RDFa通过引入名字空间的方法,在已有的标签中加入RDFa相应的属性,以便解析支持RDFa技术的浏览器或者搜索引擎,从而达到优化的目的。微数据是给那些已经在页面上可见的数据施加额外的语义,当HTML的词汇不够用时,使用微数据可以取得较好的效果。RDF 支持类似数据库的查询语言,叫作SPARQL,它提供了查询RDF 数据的标准语法、处理SPARQL查询的规则以及结果返回形式。这个SPARQL 查询指的是查询所有选修CS328课程的学生,PREFIX部分进行命名空间的声明,使得下面查询的书写更为简洁。

2024-07-02 09:37:20 85

原创 其他OpenAI API和功能

有两个内容审核模型可供选择,默认模型是text-moderation-latest,它会随时间自动更新,以确保你始终使用最准确的模型。尽管“猫在房子周围追着老鼠跑“和“在房子周围,老鼠被猫追着跑“具有不同的语法结构,但它们的大体意思相同,因此具有相似的嵌入表示。而句子“航天员在轨修理了宇宙飞船与前面的句子(关于猫和老鼠的句子)无关,并且讨论了完全不同的主题(航天员和宇宙飞船),因此它的嵌入表示明显不同。请注意,为清晰起见,本例将嵌入显示为具有两个维度,但实际上,嵌入通常具有更高的维度,比如512维。

2024-07-01 10:18:35 334

原创 openai的其他文本补全模型

由于gpt-3.5-turbo模 型也可用于单轮文本补全任务,并且对于这类任务,两个模型的准确性相当,因此我们建议使用gpt-3.5-turbo模型(除非你需要插入、后缀等特殊功能,或者在特定的任务上text-davinci-003模型的性能更佳)。尽管无论是在价格方面还是在性能方面,GPT-3.5 Turbo 模型通常都是最佳选择,但是不妨了解如何使用文本补全模型,特别是在微调等用例中,GPT-3文本补全模型是唯一的选择。然而,在复杂的推理场景中,gpt-4模型远优于任何先前的模型。

2024-07-01 10:03:47 260

原创 Retrieve-Rewrite-Answer: A KG-to-Text Enhanced LLMs Framework for Knowledge Graph Question Answering

尽管大型语言模型(LLMs)在知识密集型任务中表现出色,但在记忆所有世界知识尤其是长尾知识方面仍有局限性。本文研究了知识图谱问题解答(KGQA)任务中需要丰富世界知识的知识增强语言模型方法。现有工作表明,检索知识图谱知识来增强语言模型的提示功能,可以显著提高语言模型在知识图谱问题解答中的性能。然而,这些方法缺乏对幼稚园知识的良好口头表述,即忽略了幼稚园表述与文本表述之间的差距。为此,我们提出了一种对答案敏感的 "KG-to-Text "方法,它可以将 KG 知识转化为对 KGQA 最有参考价值的文本化语句。

2024-06-29 11:07:48 937

原创 Query Rewriting for Retrieval-Augmented Large Language Models

大语言模型(LLM)在检索--然后阅读(retrieve--then--read)管道中发挥着强大的黑盒阅读器的作用,在知识密集型任务中取得了显著进展。这项工作从查询重写的角度出发,为检索增强型 LLMs 引入了一个新的框架,即重写-检索-阅读(Rewrite-RetrieveRead),而不是以前的检索-重写-阅读(Retrieve-then-read)。与之前侧重于调整检索器或阅读器的研究不同,我们的方法关注的是搜索查询本身的调整,因为输入文本与检索所需的知识之间不可避免地存在差距。

2024-06-29 10:34:01 1037

原创 在预训练语言模型主流架构

在预训练语言模型时代,自然语言处理领域广泛采用了预训练 + 微调的范式,并诞生了以 BERT 为代表的编码器(Encoder-only)架构、以 GPT 为代表的解码器(Decoder-only)架构和以 T5 为代表的编码器-解码器(Encoder-decoder)架构的大规模预训练语言模型。基于编码器-解码器设计的预训练语言模型(诸如 T5 等)在众多自然语言理解与生成任务中展现出了优异的性能,但是目前只有如 FLAN-T5 等少数大语言模型是基于编码器-解码器架构构建而成的。

2024-06-28 15:55:48 189

原创 Transformer 模型的详细配置---归一化、位置、激活函数和注意力机制

    大语言模型的预训练过程中经常会出现不稳定的问题。为了应对这一问题,深度学习方法通常会采用特定的归一化策略来加强神经网络训练过程的稳定性。原始的 Transformer 模型主要使用了层归一化方法(Layer Normalization, LN)。随着研究工作的不断深入,基于层归一化的改进技术不断涌现,例如均方根层归一化(Root Mean Square Layer Normalization, RMSNorm)和 DeepNorm,这些新技术已经在一些大语言模型中得到应用。    LayerNorm

2024-06-28 15:38:40 633

原创 互联网时代的语义网知识表示框架---OWL和OWL2 Fragments

如果一个属性被声明为传递,则由 a exp:ancestor b和bexp:ancestor c可以推出 a exp:ancestor c.例如 exp:小明exp:ancestor exp:小林: exp:小林exp:ancestor exp:小志,根据上述声明,可以推出exp:小明exp:ancestor exp:小志。例如,exp:ancestor owl:inverseOf exp:descendant 指 的 是 exp:ancestor 和exp:descendant是互逆的。

2024-06-26 19:12:47 51

原创 深入了解 GPT-4 和 ChatGPT 的 API---使用 OpenAI Python 库

在前面的例子中,我们使用了最少数量的参数,即用于预测的 LLM 和输入消息。在 OpenAI API 调用结果需要由代码的其余部分处理时,这个功能特别有用:你可以使用函数定义将自然语言转换为 API 调用或数据库查询,从文本中提取结构化数据,并通过调用外部工具来创建聊天机器人,而无须创建复杂的提示词以确保模型以特定的格式回答可以由代码解析的问题。如果将参数 n 设置为大于 1,那么你会发现 prompt_tokens 的值不会改变,但 completion_tokens 的值将大致变为原来的 n 倍。

2024-06-26 15:48:17 1162

原创 深入了解 GPT-4 和 ChatGPT 的 API---OpenAI Playground

    掌握GPT-4 和 ChatGPT 的 API 的使用方法,以便有效地将它们集成到 Python 应用程序中。首先,需要了解 OpenAI Playground。这将使你在编写代码之前更好地了解模型。接着,需要学习 OpenAI Python 库。这部分内容包括登录信息和⼀个简单的 Hello World 示例。然后,需要学习创建和发送 API 请求的过程,并了解如何处理 API 响应。这将确保你知道如何解释这些 API 返回的数据。最后,还会介绍诸如安全最佳实践和成本管理等考虑因素。随着学习的深入

2024-06-24 21:05:59 1503

原创 使用插件和微调优化 GPT 模型

    自 2012 年起,Be My Eyes 已通过技术为数百万视障人士,提供了帮助它的应用程序是志愿者与需要帮助的视障人士之间的纽带,使视障人士在日常生活中得到帮助,比如识别产品或在机场导航。只需在应用程序中点击⼀次,需要帮助的视障人士即可联系到⼀位志愿者,后者通过视频和⻨克风提供帮助。GPT-4 的多模态能力使得它能够处理文本和图像。Be My Eyes 开始基于 GPT-4 开发新的虚拟志愿者。这个虚拟志愿者旨在达到与⼈类志愿者相当的理解水平和帮助能力。Be My Eyes 的首席执行官 Mich

2024-06-24 19:45:31 906

原创 GPT 模型简史:从 GPT-1 到 GPT-4

    2018 年年中,就在 Transformer 架构诞生⼀年后,OpenAI 发表了⼀篇题为“Improving Language Understanding by Generative Pre-Training”的论文,作者是 Alec Radford 等⼈。这篇论文介绍了 GPT,也被称为 GPT-1。在 GPT-1 出现之前,构建高性能 NLP 神经网络的常用方法是利用监督学习。这种学习技术使用大量的手动标记数据。以情感分析任务为例,目标是对给定的文本进行分类,判断其情感是积极的还是消极的。

2024-06-21 19:59:38 1741 1

原创 初识 GPT-4 和 ChatGPT

作为 LLM,GPT-4 和 ChatGPT 是 NLP 领域中最新的模型类型,NLP 是机器学习和⼈⼯智能的⼀个子领域。在深⼊研究 GPT-4 和 ChatGPT 之前,有必要了解 NLP 及其相关领域。AI 有不同的定义,但其中⼀个定义或多或少已成为共识,即 AI 是⼀类计算机系统,它能够执行通常需要⼈类智能才能完成的任务。根据这个定义,许多算法可以被归为 AI 算法,比如导航应用程序所用的交通预测算法或策略类视频游戏所用的基于规则的系统。从表面上看,在这些示例中,计算机似乎需要智能才能完成相关任务。

2024-06-21 17:29:22 1927 1

原创 互联网时代的语义网知识表示框架---RDF和RDFS

在RDF中,知识总是以三元组的形式出现。每一份知识可以被分解为如下形式:(subject,predicate,object)。例如,IBM邀请Jeff Pan作为讲者,演讲主题是知识图谱”可以写成以下RDF三元组:(BMTalk,speaker,.Jeff),(IBM-Talk,theme,KG)。RDF中的主语是一个个体(Individual),个体是类的实例。RDF中的谓语是一个属性。属性可以连接两个个体,或者连接一个个体和一个数据类型的实例。

2024-06-19 09:46:10 183

原创 人工智能早期的知识表示方法

20世纪90年代,MITAI实验室的R.Davis定义了知识表示的五大用途或特点:客观事物的机器标示(A KR is a Surrogate),即知识表示首先需要定义客观实体的机器指代或指称。一组本体约定和概念模型(A KR is a Set of Ontological Commitments),即知识表示还需要定义用于描述客观事物的概念和类别体系。

2024-06-19 08:54:46 140

原创 知识图谱的相关技术

    知识图谱是交叉领域,涉及的相关领域包括人工智能、数据库、自然语言处理、机器学习、分布式系统等。下面分别从数据库系统、智能问答、机器推理、推荐系统、区块链与去中心化等角度介绍知识图谱有关的相关技术进展。    随着知识图谱规模的日益增长,知识图谱数据管理问题愈加突出。近年来,知识图谱和数据库领域均认识到大规模知识图谱数据管理任务的紧迫性。由于传统关系数据库无法有效适应知识图谱的图数据模型,知识图谱领域形成了RDF数据的三元组库(Triple Store),数据库领域开发了管理属性图的图数据库(Grap

2024-06-18 09:23:11 174

原创 知识图谱的技术流程

以关系抽取为例,典型的关系抽取方法可以分为基于特征模板的方法、基于核函数的监督学习方法、基于远程监督的方法和基于深度学习的监督或远程监督方法,如简单CNN、MP—CNN、MWK—CNN、PCNN、PCNN+ Att 和MIMLCNN 等。事件是一种复合的实体。一般流程为:首先确定知识表示模型,然后根据数据来源选择不同的知识获取手段导入知识,接着综合利用知识推理、知识融合、知识挖掘等技术对构建的知识图谱进行质量提升,最后根据场景需求设计不同的知识访问与呈现方法,如语义搜索、问答交互、图谱可视化分析等。

2024-06-18 08:28:39 108

二级数据库技术.zip

计算机二级数据库考试是中国教育部计算机等级考试(NCRE)的一部分,该考试旨在测试考生对数据库管理和应用的基本知识和技能。这个考试是针对那些希望证明自己具有数据库操作和管理能力的人员,特别是使用Microsoft SQL Server作为数据库管理系统的人员。 考试内容: 计算机二级数据库考试内容通常包括以下几个方面: 数据库基本概念:包括数据库的定义、类型、数据模型等。 SQL语言:学习如何使用结构化查询语言(SQL)进行数据库的创建、查询、更新和删除操作。 数据库设计:理解数据库设计的基本原则,包括实体-关系模型、规范化理论等。 数据库管理和维护:涵盖数据库的安全性、完整性、备份和恢复等管理任务。 数据库应用开发:可能包括使用某种程序设计语言(如C#、Java)进行数据库应用程序的开发。 考试形式: 考试通常分为理论考试和实际操作考试两部分。理论考试主要测试考生对数据库理论知识的掌握,而实际操作考试则侧重于测试考生使用数据库管理系统的实际能力。 考试难度和认证: 计算机二级数据库考试的难度是中等,它要求考生具备一定的计算机操作能力和数据库理论知识。

2024-06-18

HBase总结.xmind

HBase是一个分布式的、可扩展的、面向列的存储系统,它是Apache软件基金会的一个开源项目,基于Google的BigTable模型构建。HBase运行在Hadoop生态系统之上,利用Hadoop的文件存储系统HDFS(Hadoop Distributed File System)来存储数据,并且可以与Hadoop的计算框架MapReduce协同工作。以下是HBase的几个关键特点: 1. **面向列的存储**:与传统的关系型数据库不同,HBase是基于列的存储,这意味着它允许对表的列族(column families)中的数据进行非常高效的读写操作。 2. **可扩展性**:HBase是为处理大量数据而设计的,它可以水平扩展,通过添加更多的服务器节点来增加存储和处理能力。 3. **高可用性**:HBase支持自动故障转移和副本机制,确保在发生硬件故障时服务仍然可用。 4. **一致性**:HBase提供强一致性读写,确保所有客户端看到的数据是一致的。 5. **数据模型**:HBase的数据模型包括表、行、列族和单元格。每个单元格可以存储多个版本的数据,这些版本通过时间戳来区分。

2024-06-18

MySQL索引.xmind

数据库课程设计MySQL索引是数据库表中一种特殊的数据结构,它可以帮助快速地检索表中的数据。使用索引可以大大加快查询的速度,提高数据库的性能。索引的原理类似于书籍的目录,通过目录可以快速找到书中的特定内容,而不必逐页浏览。 索引的类型: 主键索引(PRIMARY KEY): 每个表都应该有一个主键索引,用于唯一地标识表中的每一行数据。主键索引可以加快数据检索的速度,并且强制数据的唯一性。 唯一索引(UNIQUE): 唯一索引确保索引列中的每个值都是唯一的。如果一个列上有唯一性约束,MySQL会自动创建一个唯一索引。 常规索引(INDEX): 常规索引是最基本的索引类型,它没有唯一性约束,只是用于加快查询速度。 全文索引(FULLTEXT): 全文索引用于全文搜索,通常用于InnoDB或MyISAM表中的文本数据。它允许快速地查找文本中的关键词。 空间索引(SPATIAL): 空间索引用于空间数据类型,如GIS数据。它优化了空间数据的查询。

2024-06-18

Python安装第二步.png

Python安装的第二步通常是运行下载的安装程序并按照提示完成安装过程。以下是针对不同操作系统的简要说明: Windows系统: 双击下载的.exe安装文件。 在安装向导中,勾选“Add Python to PATH”选项,这样可以在命令行中直接运行Python。 选择安装路径,或者保持默认路径。 点击“Install Now”或“Next”按钮开始安装。 等待安装完成,点击“Finish”按钮关闭安装向导。 macOS系统: 双击下载的.pkg文件。 在安装向导中,按照提示操作,通常只需点击“继续”或“下一步”。 输入你的管理员密码(如果需要)。 等待安装完成,点击“关闭”按钮关闭安装向导。 Linux系统: 在Linux系统中,如果你使用包管理器安装Python,通常不需要额外的步骤,因为包管理器会自动处理依赖关系和安装过程。如果你从源代码安装,你需要编译源代码: 解压下载的源代码包:tar -xvf Python-3.x.x.tar.xz(将3.x.x替换为实际的版本号)。 进入解压后的目录:cd Python-3.x.x 准备编译环境:sudo apt-get build-

2024-06-18

Python安装第一步.png

Python安装的第一步通常是下载Python安装程序。Python官方提供了适用于不同操作系统的安装程序,你可以根据你的操作系统选择合适的版本进行下载。 以下是针对不同操作系统的简要说明: Windows系统: 访问Python官方网站的下载页面:https://www.python.org/downloads/windows/ 选择适用于Windows的Python版本,注意选择与你的系统相匹配的版本(32位或64位)。 下载适合你的系统的安装程序,通常是一个.exe文件。 macOS系统: 访问Python官方网站的下载页面:https://www.python.org/downloads/macos/ 下载最新版本的Python安装程序,通常是一个.pkg文件。 Linux系统: Linux系统通常预装了Python,但版本可能不是最新的。你可以使用Linux的包管理器来安装最新版本的Python。以下是一些常见Linux发行版的安装命令:

2024-06-18

Python安装测试.png

"Python安装测试"这个术语可能指的是在安装Python环境后进行的测试,以确保Python安装正确并且能够正常运行。通常,这涉及到运行一个简单的Python脚本来检查Python解释器是否工作正常。 以下是一个简单的Python安装测试步骤: 打开命令行工具: 在Windows上,这可能是Command Prompt或PowerShell。 在macOS或Linux上,这通常是Terminal。 检查Python版本: 输入python --version(在Linux或macOS上)或python -V(在Windows上),然后按回车键。这将显示安装的Python版本。如果看到版本信息,这意味着Python已正确安装。 运行Python解释器: 输入python(在Linux或macOS上)或python.exe(在Windows上),然后按回车键。这将打开Python交互式解释器。 执行简单的Python代码: 在Python提示符下,输入以下代码行:print("Hello, World!"),然后按回车键。如果一切正常,你应该会在屏幕上看到Hello, World!

2024-06-18

pycharm安装教程.docx

PyCharm 是由 JetBrains 开发的一款 Python 集成开发环境(IDE),它提供了代码分析、图形化调试器、集成测试器、集成版本控制系统等强大的功能,广受 Python 开发者的欢迎。下面是 PyCharm 安装的简单步骤: 访问 PyCharm 的[官方网站](https://www.jetbrains.com/pycharm/download/),根据你的操作系统选择相应的版本进行下载。PyCharm 提供专业版(Professional)和社区版(Community),专业版包含更多功能,适合商业用途,而社区版免费且适合个人开发者使用。 - 打开下载的安装包。 - 按照安装向导提示进行操作。 - 在安装过程中,你可以自定义安装路径,也可以选择一些附加选项,如创建桌面快捷方式等。 - 安装完成后,运行 PyCharm。 - 第一次启动时,PyCharm 会提示你导入设置,如果没有特别的配置需求,可以选择“Do

2024-06-18

《1研究生必读→如何获得全文文献》 《1研究生必读→如何积极的进行交流》 《1研究生必读→如何选课和学习》

《1研究生必读→如何获得全文文献》 《1研究生必读→如何积极的进行交流》 《1研究生必读→如何选课和学习》

2024-06-14

Langchain-Chatchat是一个利用语言链技术构建的聊天机器人项目

语言链技术是一种将自然语言处理(NLP)和自然语言生成(NLG)结合起来的技术,可以将人类语言转换为机器可以理解和执行的指令。 Langchain-Chatchat项目的主要目标是构建一个能够与人类进行自然对话的聊天机器人,可以应用于各种场景,如客服、教育、娱乐等。通过使用语言链技术,Langchain-Chatchat可以理解和生成自然语言,从而实现与人类的自然交互。 该项目的实现主要分为以下几个步骤: 数据采集与处理:收集大量的文本数据,并对这些数据进行处理,以用于后续的训练和模型建立。 模型训练:使用采集到的数据训练语言模型,使其能够理解和生成自然语言。 对话管理:建立对话管理机制,使机器人能够根据上下文和人类输入生成合适的回答。 应用部署:将训练好的模型部署到实际应用场景中,与人类进行自然对话。 总的来说,Langchain-Chatchat项目利用语言链技术实现了一个能够与人类进行自然对话的聊天机器人,可以应用于各种场景,为用户提供便捷的服务。

2024-06-06

教你写出完美论文,为您的论文进入美国SCI导航,写学术论文的技巧,Abstract写作方法,阐释而渔–谈科学研究与学术论文撰写等

“教你写出完美论文”:包含有关撰写高质量学术论文的全面指南,涵盖论文结构、写作风格、数据分析和结论等方面。 “为您的论文进入美国SCI导航”:提供了关于如何选择合适的SCI期刊投稿、论文格式要求和审稿过程等方面的建议。 “写学术论文的技巧”:包含有关学术论文写作的实用技巧,如如何进行文献综述、如何撰写方法论和结果部分等。 “HowtoWriteaScientificPaper”:是一份关于如何撰写科学论文的指南,涵盖论文结构、写作风格和研究论文的常见问题。 “论文全攻略”:提供了一份全面的指南,包括如何选择合适的期刊、如何准备论文、如何应对审稿意见等。 “论文写作方法”:包含有关论文写作的一般方法和建议,适用于不同学科和研究领域。 “Abstract写作方法”:专注于如何撰写有效的论文摘要,这是论文的重要组成部分,能够吸引读者的注意。 Howtopulish a(good) Paper”:是一个 PowerPoint 演示文稿,提供有关如何撰写和发表高质量论文的指导。

2024-06-04

外文投稿常用语’, ‘SCI投稿技巧’, ‘答复审稿人的策略和答复信的写作技巧’, '发表论文实用手册’

“000外文投稿常用语”:这个文件可能包含在外文期刊投稿时常用的一些术语和表达方式。对于非英语母语的学者来说,这个文档可能有助于他们在撰写英文论文时使用更准确和专业的话语,从而提高论文的质量和接受率。 “SCI投稿技巧”:SCI是指Science Citation Index,这是一个用来检索科学论文引用信息的索引。这个文件可能提供了关于如何向SCI收录的期刊投稿的技巧和建议,包括论文结构、内容要求、引用格式等,帮助研究者提高论文被SCI期刊接受的可能性。 “答复审稿人的策略和答复信的写作技巧”:这个文件可能提供了关于如何回复审稿人提出的意见和修改建议的策略,以及如何撰写回复信的技巧。这对于研究者在与审稿人沟通时显得尤为重要,因为合适的沟通方式可以帮助研究者更好地解释他们的研究,回应质疑,并增加论文被接受的机会。 “发表论文实用手册”:这个文件可能是一个全面的指南,涵盖了发表论文的整个过程,从论文写作、修改、投稿到处理审稿意见等各个环节。它可能提供了实用的技巧和策略,帮助研究者更顺利地完成论文发表的过程。

2024-06-04

论文修改葵花宝典文件和论文修改助手软件程序

"论文修改葵花宝典.doc" 这个名字听起来像是一个文档文件,可能是为一个指导性的文档或者是一个包含论文修改技巧和指南的文档。这个文件可能包含了如何改进论文质量、语言表达、逻辑结构、引用格式等方面的建议和工具。它可能是为了帮助学者和学生提高论文写作能力,确保论文的专业性和准确性。 "论文修改助手.exe" 这个名字听起来像是一个可执行文件,可能是软件程序的一种。这个程序可能是一个专门设计来辅助论文修改的工具,提供自动化的功能,如语法检查、拼写检查、文本优化建议、引用格式自动生成等。它旨在简化论文修改的过程,提高效率,减少人为错误。使用这个工具可以帮助用户提高论文的质量,确保论文符合学术规范和专业标准。 最后,在完成所有必要的修改后,您可以点击“保存”按钮来保存修改后的论文。这样,您就可以获得一份经过精心修改和完善的高质量论文。 总之,“论文修改助手”是一款功能强大的软件,可以帮助您轻松地修改和完善论文。通过使用这款软件,您可以提高论文的质量,使其更加专业和符合学术要求。

2024-06-04

学术文献数据库相关的软件程序

Social Sciences Citation Index (SSCI) 也是Web of Science的一部分,专注于社会科学领域的期刊。它同样遵循严格的筛选标准,收录了大量高质量的社会科学期刊,为社会科学研究者提供了宝贵的信息资源。 Arts & Humanities Citation Index (A&HCI) 则是Web of Science的另一个部分,专门收录艺术和人文学科领域的高质量期刊。A&HCI为艺术和人文学科的研究者提供了有力的信息支持,帮助他们追踪相关领域的最新研究成果。 Innovation patents index (INPAT) 则是一个专利索引数据库,收录了全球范围内的新颖和创新性专利。它为科技创新者和企业提供了丰富的知识产权信息,有助于他们了解市场趋势、保护自己的科研成果并寻找合作伙伴。 Science Citation Index Expanded (SCI-Expanded) 是Web of Science中的一部分,主要收录了自然科学领域的高质量期刊。这些期刊经过严格的遴选,确保了其内容的可靠性和学术价值。

2024-06-04

SCI管理软件,EndNote X8等等

EndNote X8是一款强大的文献管理软件,可以用于整理和参考各种学术资源。以下是对EndNote X8的简介: 功能概述:EndNote X8是一个集成化的文献管理工具,主要用于帮助用户组织和参考各种学术资源,如期刊、书籍、会议论文等。它能够自动识别和导入文献信息,方便用户进行文献的检索、分类和管理。此外,EndNote还提供了与Microsoft Word、PowerPoint等常用办公软件的集成功能,使用户可以在撰写论文或其他文档时直接插入已有的文献信息。 文献搜索与管理:EndNote X8具有强大的文献搜索功能,支持在线数据库和其他学术资源的搜索。用户可以通过关键词、标题、作者等信息快速找到所需的文献。一旦找到相关文献,EndNote会自动将其保存到特定的文件夹或类别中,方便用户进行管理和引用。 参考文献格式化:EndNote X8提供了多种参考文献格式供用户选择,如APA、MLA、Chicago等。用户可以根据自己所使用的文档类型或杂志社的要求,选择合适的参考文献格式。此外,EndNote还可以自动为用户提供符合要求的参考文献编号。

2024-06-04

智能营销数据集,包括dev、HIT-stop-words、samples、train、test、服饰数据

dev(开发集):开发集用于模型的训练和调优过程。在智能营销中,开发集可能包含历史营销活动的数据,如广告点击率、转化率、用户行为等。这些数据帮助开发者调整模型参数,优化算法,以达到更好的预测和决策效果。 HIT_stop_words(停用词表):停用词表通常包含在文本分析中需要忽略的常见词汇,如“的”、“是”、“在”等。在智能营销中,停用词表有助于减少数据噪声,提高文本分析的效率和准确性,特别是在处理用户评论、反馈或社交媒体数据时。 samples(样本数据):样本数据是数据集中的一部分,用于展示数据集的结构、格式和内容。在智能营销中,样本数据可能包括各种营销活动的案例、用户画像、市场细分等信息,用于帮助理解数据集的整体情况和应用场景。 train(训练集):训练集是模型训练的基础,包含大量已标注或已处理的数据。在智能营销中,训练集可能包含大量用户行为数据、购买记录、浏览历史等,用于训练模型以识别用户兴趣、预测购买意向等。 test(测试集):测试集用于评估模型的性能。在智能营销中,测试集通常包含与训练集不同的数据,用于检验模型在未见过的数据上的表现。通过测试集,可以评估模型

2024-04-20

客服机器人需要的数据集,包括order、ware、user,测试集和开发集

客服机器人所需的数据集在构建和训练过程中扮演着至关重要的角色。这些数据集主要包括订单(order)、商品(ware)和用户(user)等相关信息,用于训练机器人以理解和处理客户的各种问题和需求。 订单数据集:通常包括客户的购买记录、订单状态、支付信息、物流追踪等。这些数据有助于机器人了解客户的购买历史,以便在客户咨询订单问题时提供准确的回答和解决方案。 商品数据集:涵盖商品的详细信息,如价格、规格、库存量、产品描述等。机器人可以利用这些数据为客户提供商品查询、比较和推荐等服务,帮助客户快速找到所需商品。 用户数据集:包括用户的基本信息(如姓名、联系方式)、用户偏好(如购物习惯、兴趣爱好)、用户反馈(如评价、投诉)等。这些数据有助于机器人了解用户的个人特征和需求,从而提供更加个性化的服务。 在构建数据集时,通常需要将数据划分为测试集和开发集。测试集用于评估模型的性能,确保机器人在实际应用中能够准确地理解和响应客户的问题。开发集则用于调整和优化模型的参数和结构,以提高机器人的处理能力和准确率。

2024-04-20

TCA(迁移成分分析)是迁移学习领域中的一种经典方法,由中国香港科技大学的杨强教授团队提出,并首次在AAAI-09上展示

TCA的核心思想是将源域和目标域的数据一起映射到一个高维的再生核希尔伯特空间,以最小化源域和目标域的数据距离,同时最大程度地保留它们各自的内部属性。与PCA(主成分分析)类似,PCA处理的是单一数据集,将数据从高维空间映射到低维空间,而TCA处理的是两个不同分布的数据集(源域和目标域),将它们映射到同一低维空间。 TCA的主要步骤如下:首先计算由MMD(最大均值差异)引入的矩阵L和中心矩阵H,然后选择常用的核函数进行映射求得核矩阵K,最后求解(KLK + μI)^(-1)KHK的前m个特征值,得到降维后的源域和目标域矩阵。 通过TCA的映射,源域和目标域的数据在新的低维空间中的距离被最小化,这有助于改善迁移学习的效果,尤其是在源域和目标域数据分布不同的情况下。因此,TCA在迁移学习中具有重要的应用价值。

2024-02-27

DAN(Deep Averaging Network)是一种迁移学习方法,旨在在多个源域和一个目标域之间共享特征表示

DAN(Deep Averaging Network)是一种迁移学习方法,旨在在多个源域和一个目标域之间共享特征表示。其核心思想是通过平均和归一化技巧,将多个源域的特征表示融合在一起,以形成具有高泛化性能的特征表示。在实际应用中,DAN通常需要使用深度学习框架(如PyTorch或TensorFlow)来编写模型架构、训练代码和评估代码。 迁移学习是一种将已训练好的模型(预训练模型)参数迁移到新的模型来帮助新模型训练的技术。考虑到大部分数据或任务都存在相关性,通过迁移学习,可以将已经学到的模型参数(也可理解为模型学到的知识)通过某种方式分享给新模型,从而加快并优化模型的学习效率。 在迁移学习中,DAN方法是一种特定的实现方式,它利用平均和归一化技巧来融合多个源域的特征表示。这种方法的目的是使融合后的特征表示在目标域上具有较好的泛化性能。通过深度学习框架实现DAN时,需要设计合适的模型架构,编写训练代码和评估代码来验证模型的性能。

2024-02-27

在这个项目中,我们模拟了一个迷宫环境,其中智能体需要学习如何在没有先验知识的情况下,通过试错的方式找到从起点到终点的最佳路径

Sarsa算法是一种在强化学习中常用的值迭代方法,它结合了动态规划和蒙特卡洛方法的特点,通过不断更新状态-动作对的值函数来指导智能体的决策。 在Sarsa_maze项目中,智能体需要在迷宫中不断地进行探索和学习。它通过观察当前状态(即所处的位置),选择一个动作(即移动的方向),然后执行该动作并观察新的状态和获得的奖励。根据新的状态和奖励,智能体更新其值函数,并在下一次决策时利用这些值来指导其选择更优的动作。 这个项目旨在通过实践的方式,帮助学习者和开发者深入理解强化学习的基本原理和Sarsa算法的实现细节。通过调整超参数、探索策略以及迷宫的结构,学习者可以观察到不同因素对智能体学习性能的影响,并尝试优化其性能以达到更好的学习效果。 Sarsa_maze项目不仅是一个教育工具,也为研究者和开发者提供了一个实验平台,用于测试新的算法、策略或技术,并将其应用于实际的迷宫导航问题中。

2024-02-27

D-Q-learning是一个基于深度强化学习项目,旨在利用DNN和Q学习(Q-Learning)算法来解决复杂的决策和控制问题

项目特点 深度神经网络:D_Q_learning项目使用深度神经网络作为Q值函数的逼近器,以处理高维度、非线性的状态空间。通过训练深度神经网络,项目可以实现对复杂环境的准确表征和高效学习。 Q学习算法:项目采用Q学习算法作为核心决策方法。Q学习是一种值迭代算法,通过不断更新Q值表(或深度神经网络)来找到最优策略。在D_Q_learning项目中,深度神经网络替代了传统的Q值表,实现了对Q值的连续逼近。 端到端学习:项目采用端到端的学习方式,直接从原始状态信息(如图像)中学习决策策略,无需手动设计特征提取器或状态表示。这种方法简化了学习流程,提高了算法的通用性和适应性。 可扩展性:D_Q_learning项目具有良好的可扩展性,可以应用于多种场景和任务。通过调整网络结构和参数设置,项目可以适应不同维度和复杂度的状态空间,实现高效的决策和控制。 应用场景 D_Q_learning项目可应用于多个领域,如自动驾驶、游戏AI、机器人控制等。在这些场景中,项目可以利用深度神经网络和Q学习算法实现智能决策和控制,提高系统的性能和稳定性。

2024-02-27

(DQN) 是一个结合深度学习和Q-learning的强化学习算法,用于解决具有高维度状态空间的复杂决策问题

DQN的核心思想是使用一个深度神经网络(通常是卷积神经网络CNN)来逼近Q函数,即给定一个状态和动作,网络可以预测这个动作在该状态下的预期回报。Q-learning是一种值迭代算法,它根据当前策略计算每个动作的Q值,并选择具有最高Q值的动作来执行。然而,传统的Q-learning方法在处理高维度状态空间时变得不切实际,因为需要为每个状态-动作对存储一个Q值,这在内存和计算上都是不可行的。 DQN通过使用深度神经网络来近似Q函数,从而克服了这个问题。这个网络接收当前状态作为输入,并输出每个可能动作的Q值。然后,DQN使用ε-greedy策略来选择动作:以ε的概率选择一个随机动作,以1-ε的概率选择具有最高Q值的动作。通过这种方式,DQN能够探索和利用:它既能选择当前认为最好的动作,又能偶尔尝试新的、可能是更好的动作。 为了训练这个网络,DQN使用了一个称为“经验回放”的技巧。在每一步,它将当前状态、选择的动作、获得的奖励以及新的状态存储在一个经验回放缓冲区中。然后,它从这个缓冲区中随机抽取小批量经验来训练网络。这种方法打破了连续样本之间的相关性,使得网络训练更加稳定。

2024-02-23

feature-extraction代码

特征提取是卷积神经网络(CNN)中的一个重要环节,它主要通过**卷积层来实现**。以下是特征提取过程的详细介绍: 1. **卷积层的作用**:卷积层是CNN中负责提取特征的核心部分。它通过一系列可学习的滤波器(或称为卷积核)与输入数据进行卷积操作,从而检测和提取局部特征。 2. **参数共享**:在卷积层中,每个滤波器都会在整个输入数据上滑动,并且相同的滤波器权重会在不同的位置上重复使用。这种参数共享机制大大减少了网络中的参数数量,使得CNN相比全连接神经网络具有更少的参数和更快的训练速度。 3. **特征映射**:每个滤波器会产生一个特征映射(feature map),它是滤波器在输入数据上的所有位置的响应。这些特征映射可以看作是从原始数据中提取的不同特征的可视化表示。 4. **多层结构**:CNN通常包含多个卷积层,每个卷积层都可以提取不同层次的特征。随着网络深度的增加,后续层可以基于前一层提取的特征进一步抽象和组合,形成更高层次的特征表示。 5. **非线性激活**:在卷积层之后,通常会应用非线性激活函数,如ReLU(Rectified Linear Unit)。

2024-02-13

DCGAN-tensorflow

DCGAN-tensorflow是基于TensorFlow实现的深层卷积生成对抗网络(Deep Convolutional Generative Adversarial Networks,DCGAN)的代码库。 DCGAN是对原始生成对抗网络(GAN)的一种改进,主要改进点在于其使用了卷积神经网络(CNN)作为生成器和鉴别器的基本模型,而非原始GAN中的多层感知机。此外,DCGAN还对CNN进行了多项改进,包括去掉全连接层、使用批量归一化、使用转置卷积(又称反卷积)进行上采样、在生成器中使用ReLU作为激活函数但输出层使用Tanh、在鉴别器中使用LeakyReLU作为激活函数等。 在DCGAN中,生成器的主要任务是从随机噪声中学习真实数据的分布,以生成尽可能接近真实数据的假数据。鉴别器则需要对输入的数据进行真假判别,即判断输入的数据是来自真实数据集还是由生成器生成的假数据。通过生成器和鉴别器的博弈,最终可以达到一个动态平衡,此时生成器生成的假数据已经非常接近真实数据,而鉴别器对于真实数据和假数据的判别概率接近0.5,相当于随机猜测。

2024-02-13

大语言模型综合评测报告极客研究中心2023.pdf

极客研究中心发布的大语言模型综合评测报告是基于对ChatGPT、Claude-instant、Sagegpt、天工3.5、文心一言、通义千问、讯飞星火认知大模型、Moss-16B、ChatGLM-6B、vicuna-13B等大语言模型的评测结果。 报告采用了四个大维度进行评测,分别是语言模型准确性、数据基础、模型和算法的能力、安全和隐私。在每个大维度下,又细分出了12个具体的子维度,包括语义理解、语法结构、知识问答、逻辑推理、代码能力、上下文理解、语境感知、多语言能力、多模态能力等。 报告采用了科学分析的方法,通过大量题目对各个大语言模型进行了评测,以全面评估各个模型的综合能力。评测内容包括了语义理解、语法结构、知识问答、逻辑推理、代码能力、上下文理解、语境感知等多方面的能力。 报告结果对各个大语言模型的综合能力进行了排名,其中ChatGPT表现优异,在语义理解、语法结构、知识问答、逻辑推理等方面都表现出了较强的能力。此外,国内的大语言模型也表现不俗,如天工3.5、文心一言等也都在某些方面具有突出的表现。 总的来说,极客研究中心发布的大语言模型综合评测报告为我们提供了一个全面了

2024-01-28

推荐系统基础代码以及其他实操

推荐系统是利用计算机技术从大量数据中自动发现和推荐对用户有价值的模式或趋势,将用户感兴趣的信息、产品、服务或者观点推荐给用户的计算机系统。推荐系统是建立在海量数据挖掘基础上的一种高级信息推荐系统,它通过分析用户的历史行为,了解用户的兴趣和需求,从而向用户推荐他们可能感兴趣的内容。 推荐系统的基本原理是基于用户的行为数据,通过算法模型对用户进行个性化画像,然后与物品进行匹配,从而将物品推荐给用户。常见的推荐系统有三种主要的应用场景:个性化推荐、相关推荐和热门推荐。个性化推荐常以“推荐”、“猜你喜欢”、“发现”等形式出现,一般放在首页位置;相关推荐常以“相关推荐”、“看了还看”等形式出现,一般放在内容详情页;热门推荐则是根据物品的热度进行推荐,常以排行榜等形式出现。 推荐系统的主要价值在于帮助用户快速筛选出感兴趣的内容,满足用户的个性化需求,提高用户体验和满意度。同时,也能够帮助商家更好地了解用户需求和市场趋势,优化产品和服务,提高运营效率。 以上是关于推荐系统的基础介绍,如需了解更多内容,可以查阅相关论文或请教专业人士。

2024-01-28

2022-Machine-Learning-Specialization-main.zip 吴恩达机器学习ppt

吴恩达的机器学习课程主要包括两门,一门是在Cousera上的《机器学习》,另一门是他在斯坦福大学教授的《CS229: Machine Learning》。 Cousera上的《机器学习》课程侧重于概念理解,而不是数学推导。这门课程重视联系实际和经验总结,吴恩达老师列举了许多算法实际应用的例子,并分享了他们入门AI时面临的问题以及处理这些难题的经验。这门课程适合初学者,课程内容可以在Cousera网站上在线观看,需要注册后可申请免费观看。 斯坦福大学的《CS229: Machine Learning》课程则更加偏好理论,适合于有一定数学基础的同学学习。这是吴恩达在斯坦福的机器学习课程,历史悠久,仍然是最经典的机器学习课程之一。 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径。 如需更多吴恩达机器学习课程相关内容,可以登录Coursera官网和B站查看课程介绍。

2024-01-28

当前最佳实践用于培训 LLM白手起家

《当前最佳实践用于培训LLM白手起家》是一本针对语言模型大语言模型(LLM)训练的实用指南。本书为读者提供了关于如何从零开始构建和训练LLM的详细步骤和最佳实践。无论您是深度学习领域的初学者还是有一定经验的开发者,这本书都将为您提供宝贵的知识和指导。介绍LLM的基本概念、原理和结构,帮助读者了解这一领域的背景和基础知识。详细探讨了各种LLM架构的设计原则和技巧,包括Transformer、GPT系列等。通过了解这些架构,读者可以更好地选择适合自己的模型类型,并根据具体需求进行定制化设计。指导读者如何收集高质量的数据,并进行必要的预处理工作,包括数据清洗、标注和增强等。掌握这些技巧将有助于提高LLM的训练效果和性能。深入介绍了LLM训练的最佳实践,包括学习率设置、优化器选择、批量大小和训练轮数等关键参数的调整。此外,还探讨了半监督学习、迁移学习和微调等高级技术,以进一步提升LLM的性能。指导读者如何将训练好的LLM部署到实际应用中。介绍了评估LLM性能的常用指标和方法,以及如何通过调整模型和参数来优化性能。这部分内容将帮助读者更好地理解LLM的性能瓶颈,并采取有效措施进行改进。

2024-01-18

微调和提示工程的最佳实践 LLM

这本书是一本关于大语言模型微调的实用指南,旨在帮助读者掌握如何使用预训练的语言模型来提高特定任务或领域的性能。介绍了大语言模型微调的重要性以及应用场景。详细介绍了大语言模型的基本原理、结构和预训练方法。这部分内容为后续的微调技巧和算法提供了必要的基础。深入探讨了大语言模型微调的各种技巧,包括数据预处理、模型架构、优化算法等。通过这些技巧,读者可以优化模型的性能,使其更好地适应特定任务或领域。通过具体的案例分析,演示了如何将大语言模型微调应用于实际问题解决中,包括文本分类、情感分析、问答系统等。这些案例提供了丰富的实践经验和解决方案,有助于读者更好地理解和应用大语言模型微调技术。介绍了用于大语言模型微调的常用工具和资源,包括深度学习框架、预训练模型库、数据集等。这些工具和资源将帮助读者更高效地进行大语言模型微调工作。探讨了大语言模型微调未来的发展趋势和应用前景。这部分内容有助于读者了解该领域的最新动态和前沿研究。

2024-01-18

python爬虫知识点大纲

Python爬虫知识点大纲主要包括以下几个方面: 爬虫基础知识:介绍爬虫的基本概念、原理和用途,以及网络请求和响应的基本流程。 Python请求库:介绍Python中常用的请求库,如requests、urllib等,以及如何使用它们发送HTTP请求并获取响应。 HTML解析库:介绍常用的HTML解析库,如BeautifulSoup、lxml等,以及如何使用它们对HTML文档进行解析和提取数据。 网络爬虫实战:通过案例介绍如何使用Python爬虫进行实际的数据抓取和解析,包括对网页的遍历、数据的提取和存储等。 反爬虫技术:介绍常见的反爬虫技术,如IP限制、验证码等,以及如何应对反爬虫技术,保证爬虫的稳定性和效率。 爬虫策略和技巧:介绍爬虫的策略和技巧,如多线程、多进程、分布式等,以及如何优化爬虫的性能和效率。

2023-12-06

Python办公自动化知识点大纲

Python办公自动化知识点大纲主要包括以下几个方面: Excel自动化:Python可以通过第三方库如pandas和openpyxl等实现Excel自动化操作,包括读取和写入数据、格式化单元格、制作图表等。 邮件自动化:Python可以通过smtplib和poplib等库实现邮件自动化发送和接收,包括邮件内容编写、发送、过滤等。 办公文件操作:Python可以实现对Word、Excel、PDF等办公文件的操作,包括读取、修改、保存等。 网络爬虫:Python可以用于构建网络爬虫程序,自动从网站上抓取数据,包括网页内容、结构化数据等。 自动化测试:Python可以用于自动化测试,包括单元测试、集成测试等,可以提高测试效率和准确性。 自动化脚本:Python可以用于编写自动化脚本,包括定时任务、批处理等,可以提高工作效率和准确性。 数据处理和分析:Python可以用于数据处理和分析,包括数据清洗、数据转换、数据可视化等,可以为决策提供支持。

2023-12-06

python基础语法大纲

Python基础语法知识点大纲包括以下几个方面: 变量和数据类型:变量是Python中的代号,用于代表一个数据。Python中的变量不需要预先声明,可以直接赋值。Python中有多种数据类型,包括整型(整数)、浮点型(小数)、布尔型(True或False)、字符型(字符串)等。 控制结构:控制结构是指程序中的流程控制,包括顺序结构、条件结构(if语句)和循环结构(for和while循环)。条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码。 函数:函数是一段可重用的代码块,可以接受输入参数并返回输出结果。在Python中,函数定义以关键字def开始,后面跟着函数名、参数列表和冒号。函数体包含在花括号中,可以包含多个语句。 模块和包:模块是一个包含Python代码的文件,通常包含函数、类和变量。包是一个包含多个模块的目录。通过导入模块和包,可以在程序中使用其他文件中的代码。 文件处理:Python提供了多种文件处理操作,包括打开文件、读取文件内容、写入文件内容等。在处理文件时,需要注意文件路径的处理和文件锁等高级操作。 异常处理:异常是指程序中出现的意外情况。

2023-12-06

初学python能够使用到的手册,里面有各种语法格式

它涵盖了Python编程的各个方面,包括语法、数据类型、控制流、函数、模块、文件处理、网络编程等。以下是Python必背手册的主要内容: Python基础语法:Python必背手册详细介绍了Python的基本语法,包括变量、数据类型、运算符、条件语句、循环语句等。 数据类型:手册中涵盖了Python中的各种数据类型,包括数字、字符串、列表、元组、字典、集合等,并详细介绍了它们的使用方法和常用操作。 控制流:手册中包括了Python中的控制流语句,如if语句、循环语句、break和continue语句等,并介绍了如何使用它们来实现程序的逻辑控制。 函数:手册中详细介绍了Python中的函数定义和调用方法,包括函数的参数传递、返回值、变量作用域等,同时还介绍了装饰器和闭包的使用。 模块和包:手册中介绍了如何使用Python模块和包来组织和管理代码,包括模块的导入和使用、包的创建和安装等。 文件处理:手册中包括了Python中文件的读写操作,如打开文件、读取文件内容、写入文件内容等。 异常处理:手册中详细介绍了Python中的异常处理机制,包括异常的捕获和处理、异常的抛出和传播等。

2023-12-05

yelp-review-polarity-csv数据集

yelp_review_polarity_csv数据集包含超过1,569,264个样本。该数据集的子集中有280,000个训练样本和19,000个测试样本。这些样本都是来自Yelp网站上用户的评论,并附带有正面或负面的情感极性标签。 yelp_review_polarity_csv数据集主要用于情感分析任务,特别是用于训练和评估情感分类器模型。该数据集包含了大量用户评论和相应的情感标签,使得研究人员可以训练模型来识别正面或负面情感,进而用于各种实际应用场景中。 除了情感分析之外,该数据集还可以用于其他相关任务,如: 情感词典构建:利用数据集中标注的情感标签,研究人员可以构建情感词典,对文本进行情感分析。 文本分类:虽然该数据集主要用于情感分析,但也可以将其视为一种文本分类数据集,用于训练和评估其他文本分类模型。 自然语言处理:通过该数据集,研究人员可以训练自然语言处理模型,提高模型对自然语言的理解和表达能力。 文本挖掘:利用该数据集可以进行文本挖掘任务,如情感分析、主题分类等。

2023-12-02

fact-retrieval-20231016T061455Z-001数据集

Fact-retrieval数据集是一种用于事实检索系统的数据集,通常包含预先定义好的事实陈述和相关查询。这种数据集常用于训练和评估事实检索系统的性能。 在Fact-retrieval数据集中,每个事实陈述包含一个或多个查询词或短语,以及与该查询词或短语相关的事实信息。这些事实信息通常以表格形式呈现,包括相关实体、属性和关系等。 Fact-retrieval数据集的应用场景包括: 事实检索系统开发:用于训练和评估事实检索系统的性能,帮助研究人员了解系统的准确性和效率。 信息提取:从Fact-retrieval数据集中提取有用的事实信息,用于构建知识图谱、问答系统等应用。 自然语言处理:通过Fact-retrieval数据集,可以训练自然语言处理模型,提高模型对自然语言的理解和表达能力。 文本挖掘:利用Fact-retrieval数据集,可以进行文本挖掘任务,如情感分析、主题分类等。

2023-12-02

SST-2-20231016T061428Z-001数据集

SST-2(Stanford Sentiment Treebank,斯坦福情感树库)是一个二元单句分类任务的数据集,由电影评论中提取的句子组成。这个任务的目标是区分正面情感和负面情感,是情感分析领域中一个重要的基准数据集。 SST-2数据集中的每个句子都由人工进行了标注,标注为正面或负面情感。这个数据集的样本数量相对较大,包括训练集、开发集和测试集,有助于对模型进行充分的训练和测试。 在SST-2数据集上,情感分类的评估指标主要是准确率(accuracy)和F1值。由于数据集中的类别不平衡,准确率可能会产生偏差,因此F1值也被广泛使用。此外,SST-2数据集还可以用于研究情感词典的构建和其他相关任务。 SST-2数据集的应用场景包括:情感分类:通过训练和测试情感分类器模型,对电影评论中的句子进行正面或负面情感的分类。情感词典构建:利用SST-2数据集中标注的情感标签,研究人员可以构建情感词典,对文本进行情感分析。情感分析研究:SST-2数据集还可以用于研究情感分析的其他相关任务,如情感极性检测、情感词典的优化等。

2023-12-02

SICK-E-balanced数据集

SICK-E数据集是一种用于情感分析的语料库,旨在评估情感分类器的性能。该数据集包含来自电影评论的文本,其中每条评论都附带了相应的情感标签(正面或负面)。 SICK-E数据集的特点是它只包含英文评论,并且每个评论都经过了预处理,以去除任何非文本字符和标点符号。此外,该数据集还提供了每个评论的词频分布和平均词长等信息。 SICK-E数据集的另一个重要特点是它的平衡性。在情感分析任务中,数据集的平衡性非常重要,因为正面和负面情感的评论数量往往不均衡。SICK-E数据集通过随机选择正面和负面评论来平衡数据集中的情感分布,从而使得情感分类器的训练更加公平。 SICK-E数据集的文本数据经过随机选择和平衡处理,使得正面和负面评论的数量相等,从而使得情感分类器的训练更加公平。该数据集适用于评估和优化情感分类器的性能,以及研究情感词典的构建和其他相关任务。

2023-12-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除