学习的种类
参考书:图解机器学习
1.监督学习
(1)定义:指有求知欲的学生从老师那里获取知识、信息,老师提供对错指示、告知最终答案的学习过程。
在机器学习中,计算机 = 学生,周围的环境 = 老师。
(2)最终目标:根据在学习过程中获得的经验技能,对没学习过的问题也可以做出正确解答,使计算机获得这种泛化能力。
(3)应用:手写文字识别、声音处理、图像处理、垃圾邮件分类与拦截、网页检索、基因诊断、股票预测等。
(4)典型任务:预测数值型数据的回归、预测分类标签的分类、预测顺序的排列
(5)我的理解:计算机在正确输出的不断更正和指引下,不断提高自己分析和解决问题的正确性。
2.无监督学习
(1)定义:指在没有老师的情况下,学生自学的过程。
在机器学习中,计算机从互联网中自动收集信息,并获取有用信息。
(2)最终目标:无监督学习不局限于解决有正确答案的问题,所以目标可以不必十分明确。
(3)应用:人造卫星故障诊断、视频分析、社交网站解析、声音信号解析、数据