机器学习的种类及其典型的任务

本文介绍了机器学习的三种主要类型:监督学习、无监督学习和强化学习,包括各自定义、目标、应用场景和典型任务。监督学习常用于预测数值型数据的回归和分类;无监督学习适用于聚类和异常检测;强化学习则通过自我评估来优化策略。此外,还详细阐述了回归、分类、异常检测、聚类和降维等机器学习任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习的种类

参考书:图解机器学习

1.监督学习
监督学习
(1)定义:指有求知欲的学生从老师那里获取知识、信息,老师提供对错指示、告知最终答案的学习过程。
在机器学习中,计算机 = 学生,周围的环境 = 老师。
(2)最终目标:根据在学习过程中获得的经验技能,对没学习过的问题也可以做出正确解答,使计算机获得这种泛化能力。
(3)应用:手写文字识别、声音处理、图像处理、垃圾邮件分类与拦截、网页检索、基因诊断、股票预测等。
(4)典型任务:预测数值型数据的回归、预测分类标签的分类、预测顺序的排列
(5)我的理解:计算机在正确输出的不断更正和指引下,不断提高自己分析和解决问题的正确性。

2.无监督学习
无监督学习
(1)定义:指在没有老师的情况下,学生自学的过程。
在机器学习中,计算机从互联网中自动收集信息,并获取有用信息。
(2)最终目标:无监督学习不局限于解决有正确答案的问题,所以目标可以不必十分明确。
(3)应用:人造卫星故障诊断、视频分析、社交网站解析、声音信号解析、数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值