关闭
当前搜索:

[置顶] 剑指Offer系列刷题笔记汇总

本文转自:个人网站:点击查看 一前言 二总结 链表-8道 二叉树12道 二叉搜索树3道 数组11道 字符串8道 栈3道 递归4道 回溯法2道 其他15道 一、前言 本系列文章为《剑指Offer》刷题笔记。 刷题平台:牛客网 书籍下载:共享资源 刷题刷的比较慢,花费了两个多月,终于将所有题目过了一遍,牛客网一共有66道题,这次刷题主要使用C++,接下来会使用Pytho...
阅读(139) 评论(0)

[置顶] 程序员内功:八大排序算法

转自:我的个人网站 一 前言 二 八大排序算法 排序的概念 排序分类 算法分析 系列文章 一 前言 如果说各种编程语言是程序员的招式,那么数据结构和算法就相当于程序员的内功。 想写出精炼、优秀的代码,不通过不断的锤炼,是很难做到的。 二 八大排序算法 排序算法作为数据结构的重要部分,系统地学习一下是很有必要的。 1 排序的概念 排序是计算机内经常进行的...
阅读(891) 评论(2)

[置顶] Python3《机器学习实战》学习笔记(十一):线性回归基础篇之预测鲍鱼年龄

前面的文章介绍了很多分类算法,分类的目标变量是标称型数据,而本文将会对连续型的数据做出预测。主要讲解简单的线性回归和局部加权线性回归,并通过预测鲍鱼年龄的实例进行实战演练。...
阅读(1490) 评论(3)

[置顶] Python3《机器学习实战》学习笔记(十):提升分类器性能利器-AdaBoost

前面的文章已经介绍了五种不同的分类器,它们各有优缺点。我们可以很自然地将不同的分类器组合起来,而这种组合结果则被成为集成方法(ensemble method)或者元算法(meta-algorithm)。使用集成方法时会有多种形式:可以是不同算法的集成,也可以是同一种算法在不同设置下的集成,还可以是数据集不同部分分配给不同分类器之后的集成。...
阅读(2512) 评论(9)

[置顶] Python3《机器学习实战》学习笔记(九):支持向量机实战篇之再撕非线性SVM

上篇文章讲解的是线性SVM的推导过程以及简化版SMO算法的代码实现。本篇文章将讲解SMO算法的优化方法以及非线性SVM。...
阅读(4292) 评论(15)

[置顶] Python3《机器学习实战》学习笔记(八):支持向量机原理篇之手撕线性SVM

说来惭愧,断更快半个月了,本打算是一周一篇的。感觉SVM瞬间难了不少,推导耗费了很多时间,同时身边的事情也不少,忙了许久。本篇文章参考了诸多大牛的文章写成的,对于什么是SVM做出了生动的阐述,同时也进行了线性SVM的理论推导,以及最后的编程实践,公式较多,还需静下心来一点一点推导。...
阅读(6314) 评论(56)

[置顶] Python3《机器学习实战》学习笔记(七):Logistic回归实战篇之预测病马死亡率

本文对梯度上升算法和改进的随机梯度上升算法进行了对比,总结了各自的优缺点,并对sklearn.linear_model.LogisticRegression进行了详细介绍。...
阅读(3503) 评论(8)

[置顶] Python3网络爬虫(十四):跟股神巴菲特学习炒股之财务报表入库(MySQL)

网上有很多《跟巴菲特学看上市公司财务报表》诸如此类的文章,仁者见仁智者见智。本文重点不在于,如何分析财务报表,而是如何获得财务报表,为后续的方便分析做准备!...
阅读(6012) 评论(32)

[置顶] Python3《机器学习实战》学习笔记(六):Logistic回归基础篇之梯度上升算法

本文从Logistic回归的原理开始讲起,补充了书上省略的数学推导。本文可能会略显枯燥,理论居多,Sklearn实战内容会放在下一篇文章。自己慢慢推导完公式,还是蛮开心的一件事。...
阅读(6361) 评论(30)

[置顶] Python3网络爬虫(十三):王者荣耀那些事!(Fiddler之手机APP爬取)

我之前的爬虫博客,爬的都是网页的信息,什么下载小说啊,下载动漫啊,下载帅哥图、妹子图啊。玩这些东西的时候,你想过爬取手机APP里面的东西吗?...
阅读(13401) 评论(22)

[置顶] 从高考到程序员的成长之路

风风雨雨四十载——高考恢复40年,中国士子的人生上升通道也已经被打通了40载。虽然社会的多元发展,已经淡化了“高考决定人生”的评判标准,但作为芸芸众生,参加高考并读完大学,也算是为人生奠定基石。...
阅读(10230) 评论(153)

[置顶] Python3网络爬虫(十二):初识Scrapy之再续火影情缘

《火影忍者》不是已经完结了吗?《火影忍者》是完结了,但是鸣人儿子的故事才刚刚开始,《博人传之火影忍者新时代》正在热播中。因此,我又开始追动漫了,虽然现在不会像儿时那样激动到上蹿下跳,但是我依然喜欢看,现在感觉,继续看火影,更多的是一种情怀吧!...
阅读(9308) 评论(75)

[置顶] Jetson TX1开发笔记(四):使用Caffe对摄像机视频流中的目标进行识别

转载请注明作者和出处:http://blog.csdn.net/c406495762 嵌入式平台(Target): Jeston TX1...
阅读(8379) 评论(36)

[置顶] Caffe学习笔记(六):mnist手写数字识别训练实例

转载请注明作者和出处:http://blog.csdn.net/c406495762 Python版本: Python2.7 运行平台: Ubuntu14.04...
阅读(4318) 评论(7)

Python3网络爬虫快速入门实战解析

请在电脑的陪同下,阅读本文。本文以实战为主,阅读过程如稍有不适,还望多加练习。 本文的实战内容有:网络小说下载(静态网站)、优美壁纸下载(动态网站)、爱奇艺VIP视频下载 PS:本文为Gitchat线上分享文章,该文章发布时间为2017年09月19日。...
阅读(8448) 评论(36)

Sublime Text3 3143 注册码,亲测可用!

Sublime Text3 3143 注册码,亲测可用!...
阅读(1956) 评论(11)

Python3《机器学习实战》学习笔记(五):朴素贝叶斯实战篇之新浪新闻分类

上篇文章讲解了朴素贝叶斯的基础知识。本篇文章将在此基础上进行扩展,你将看到一下内容:拉普拉斯平滑、垃圾邮件过滤、新浪新闻分类...
阅读(5874) 评论(39)

Python3《机器学习实战》学习笔记(四):朴素贝叶斯基础篇之言论过滤器

朴素贝叶斯算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。但由于该算法以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提,就会导致算法精度在某种程度上受影响。...
阅读(5744) 评论(34)

Python3《机器学习实战》学习笔记(三):决策树实战篇之为自己配个隐形眼镜

上篇文章讲述了机器学习决策树的原理,以及如何选择最优特征作为分类特征。本篇文章将在此基础上进行介绍。主要内容包括:决策树构建、决策树可视化、使用决策树进行分类预测、决策树的存储和读取、sklearn实战之预测隐形眼镜类型...
阅读(7429) 评论(24)

112.Path Sum(Tree-Easy)

Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum....
阅读(1255) 评论(0)

501.Find Mode in Binary Search Tree(Tree-Easy)

Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST....
阅读(1088) 评论(0)

Python3《机器学习实战》学习笔记(二):决策树基础篇之让我们从相亲说起

有读者反映,说我上篇文章Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文),太长了。一看那么长,读的欲望都降低了。既然如此,决策树的内容,我就分开讲好了。本篇讨论决策树的原理和决策树的构建,完整实例内容会在下一篇进行讲解。...
阅读(8475) 评论(34)

235. Lowest Common Ancestor of a Binary Search Tree(Tree-Easy)

求二叉树的LCA,也就是两个节点的最低公共祖先。...
阅读(1289) 评论(0)

Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文)

本文将从k-邻近算法的思想开始讲起,使用python3一步一步编写代码进行实战训练。并且,我也提供了相应的数据集,对代码进行了详细的注释。除此之外,本文也对sklearn实现k-邻近算法的方法进行了讲解。实战实例:电影类别分类、约会网站配对效果判定、手写数字识别。...
阅读(15038) 评论(65)
105条 共6页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:496706次
    • 积分:6070
    • 等级:
    • 排名:第4935名
    • 原创:104篇
    • 转载:1篇
    • 译文:0篇
    • 评论:1413条
    About
    QQ交流群
      群号:328127489
    博客专栏
    文章分类
    最新评论