1004. Counting Leaves

原创 2015年11月20日 15:53:46

1004. Counting Leaves (30)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue
A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.

Input

Each input file contains one test case. Each case starts with a line containing 0 < N < 100, the number of nodes in a tree, and M (< N), the number of non-leaf nodes. Then M lines follow, each in the format:

ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 01.

Output

For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.

The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output "0 1" in a line.

Sample Input
2 1
01 1 02
Sample Output
0 1
题目的意思是让我们建立一颗树,我们明白题目的重点在于某节点是否有孩子以及是上一层哪个节点的孩子。题目让我们输出的答案是每一层没有孩子节点的个数,我们首先需要建立这棵树,然后知道这棵树有多少层,再然后如何去保存上下层孩子节点的关系,然后从上往下扫描并进行输出!此题不难。基础题
#include<stdio.h>
using namespace std;

struct Node
{
	int parent;
	int level;
	bool has_child;//
}buf[102];

int max_level;//最大深度
int count[102];//保存每层的叶子节点数

int find_level(int i)
{
	if(buf[buf[i].parent].level == 0)
		return buf[i].level = find_level(buf[i].parent) + 1;
	else
		return buf[i].level = buf[buf[i].parent].level + 1;
}

int main()
{
	freopen("E://input.txt", "r", stdin);
	int n, m;
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= n; i ++)
	{
		buf[i].parent = 0;
		buf[i].level = 0;
		buf[i].has_child = false;
		count[i] = 0;
	}
	
	for(int i = 1; i <= m; i ++)
	{
		int k, a, b;
		scanf("%d%d", &a, &k);
		buf[a].has_child = true;
		for(int j = 1; j <= k; j ++)
		{
			scanf("%d", &b);
			buf[b].parent = a;
		}
	}
	
	buf[1].level = 1;
	
	for(int i = 2; i <= n; i ++)
		find_level(i);
	
	for(int i = 1; i <= n; i ++)
	{
		if(max_level < buf[i].level)
			max_level = buf[i].level;
	}//找到最大的深度
	
	//找到各层中的叶子节点数 
	for(int i = 1; i <= n; i ++)
		if(buf[i].has_child == false)
			count[buf[i].level] ++; 
	
	
	for(int i = 1; i <= max_level; i ++)
	{
		if(i == max_level)
			printf("%d", count[i]);
		else
			printf("%d ", count[i]);
	} 

	return 0;
} 


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

1004. Counting Leaves (30)

1004. Counting Leaves (30)-DFS

考查知识点:树的遍历思路:这个题重点在于要体会到用邻接表来存储树,刚开始构建树的时候考虑要怎么一层套一层啊,显然是对邻接表的理解不深刻,构建完树后遍历此树找到叶子节点即可,其中遍历方式可分为dfs和b...

PAT 1004. Counting Leaves (30)

1004. Counting Leaves (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 ...

PAT A 1004. Counting Leaves (30)

PAT A 1004. Counting Leaves (30)

PAT-1004. Counting Leaves(Queue)

From this problem I learned that the how to traverse tree by level order. Here is the code of l...

1004. Counting Leaves (30)

1004. Counting Leaves (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard...

[搜索]PAT1004 Counting Leaves

题意:给出一棵树的非叶子结点和它的子节点,然后求这棵树每层的叶子节点数。 思路:我的想法是先从根节点搜索并依次算出每个节点所在层数再算每层的叶子节点数目。

1004. Counting Leaves (30)-PAT甲级真题(bfs,dfs,树的遍历,层序遍历)

1004. Counting Leaves (30) A family hierarchy is usually presented by a pedigree tree. Your job is ...

PAT 1004 Counting Leaves

PAT 1004 Counting Leaves

1004. Counting Leaves (30)

1.可为多叉树,采用vector保存子树名称 2.采用map记录树节点 3.采用广度遍历,输出每层的叶子节点数量 节点代码如下:struct node{ vector child; ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)