基础数论复习——扩展欧几里德算法

之前由于动态规划太弱了,复习了很久,也刷了很多题,但事实上如果上考场,遇不到像今天那样较为简单、状态比较好找的dp,我肯定不敢写,肯定还是分治处理(小数据用暴力,大数据搞正解)。
今天搞了搞另一个蒟蒻——数论。之前上过的数论就跟没上过一样,搞得像自己重新自习。观察前几年的noip,数论考的内容不多。06年的最后一题有点难度,然后就是09年的一道gcd变式处理,11年的杨辉三角,12年的裸同余方程。
记得11年那道杨辉三角形……我是手算到了5此方…而且不同系数…推出来的…所以杨辉三角应该不太难,主要是要想到考点是杨辉三角。
然后就是gcd了。
gcd本身不难,但它衍生出来的扩展欧几里德算法倒是很巧妙,今天在yz大神的耐心讲解下,重新搞懂…

直线上的点

求直线 ax+by+c=0 上有多少个整点(x,y)满足 x ∈ [ x1,x2 ],y ∈ [ y1,y2 ]。

这里就要用到扩展欧几里德算法:找出一对整数(x,y),使得 ax+by=gcd(a,b)。这里的 x 和 y 不一定是正数,还有可能是负数或者 0。
然后就是代码:

void gcd(int a,int b,int &d,int &x,int &y)
{
    if(b==0){d=a;x=1;y=0;}
    else
    {
        gcd(b,a%b,d,y,x);
        y-=x*(a/b);
    }
}

边界:gcd(a,0)=1*a-0=a。
其中,d 是要找的最大公约数,根据题意可有可无。x、y则是上面方程的解。
对于这个语句的理解:y-=x*(a/b);
设 x1、y1 为上面方程的一组解,x2、y2 为上面方程的一组解,我们可以得到这样的等式:
gcd(a,b)==ax1+by1
gcd(b,a%b)==bx2+(a%b)y2
由于gcd(a,b)==gcd(b,a%b),那么ax1+by1==bx2+(a%b)y2。
这里,a%b=a-b*(a/b)。在计算机语句中,a/b意味a/b的整数解,舍弃余数,那么再乘上b后被a减,得到的东西即为a%b。
则ax1+by1==bx2+(a-b*(a/b))y2
合并同类项后可发现,x1==y2,y1==x2-(a/b)y2
假设x1、y1为算到b==0时的答案,那么倒推回来即可求x2、y2。应用到代码中可写出:

void gcd(int a,int b,int &d,int &x,int &y)
{
    if(b==0){d=a;x=1;y=0;}
    else
    {
        gcd(b,a%b,d,x,y);
        int op1=x,op2=y;
        x=op2;
        y=op1-(a/b)*op2;
    }
}

而之前的代码是从 lrj 的书上copy下来的,他将gcd(b,a%b,d,x,y);写成了gcd(b,a%b,d,y,x);所以直接改变y的值,实际上和上面的代码同理。
对于其他解,设目前求出的解为x1、y1,另一组解为x2、y2,则易想到ax1+by1=ax2+by2,变形得a(x1-x2)=b(y2-y1)。设g=gcd(a,b),方成两边同时除以g,得a’(x1-x2)=b’(y2-y1),a’=a/g,b’=b/g,那么a’和b’一定互质,所以x1-x2一定为b’的整数倍,设它为kb’,则y2-y1=ka’。
所以如果一组解为(x1,y1),那么其他解为(x1-kb’,y1+ka’)。
对于方程ax+by=c,当且仅当c为gcd(a,b)的倍数时,方程有整数解。

运用扩展欧几里德算法求同余。ax ≡ b (mod n),意味ax%n=b%n。那么不难得出:(ax-b)是n的整数倍,设倍数为y,则ax-b=ny,移项得ax-ny=b,gcd(a,n,x,y),即可求出x。
特殊情况:b=1时,ax ≡ 1 (mod n)的解称为a关于模n的逆,1必须gcd(a,n)的倍数,所以a、n互质。

NOIP提高组2012 同余方程

描述

求关于x的同余方程ax ≡ 1 (mod b)的最小正整数解。

格式

输入格式
输入只有一行,包含两个正整数a, b,用一个空格隔开。
输出格式
输出只有一行,包含一个正整数x0,即最小正整数解。输入数据保证一定有解。

样例

样例输入
3 10
样例输出
7

限制

每个测试点1s

提示

对于40%的数据,2 ≤b≤ 1,000;
对于60%的数据,2 ≤b≤ 50,000,000;
对于100%的数据,2 ≤a, b≤ 2,000,000,000。

来源

Noip2012提高组复赛Day2T1

方程:ax-by=1。
那么直接求解gcd(a,b,x,y)即可。
值得注意的是,x为最小正整数解,所以求出的解可能为非正数或大正数,需要处理。因为ax和by一定互质,那么如上,其他解为(x1-kb’,y1+ka’),因为a、b互质,a’=a,b’=b,则处理x=(x%b+b)%b。
代码:

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
void gcd(int a,int b,int &x,int &y)
{
    if(!b)
    {
        x=1;y=0;
    }
    else
    {
        gcd(b,a%b,x,y);
        int op1=x,op2=y;
        x=op2;
        y=op1-(a/b)*op2;
    }
}
int main()
{
    int a,b,x,y;
    scanf("%d%d",&a,&b);
    gcd(a,b,x,y);
    x=(x%b+b)%b;//此处保证最小正整数解
    printf("%d",x);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值