扩展欧几里德算法解二元一次不定方程

扩展欧几里德算法:

已知两个不完全为 0 的非负整数 a,b,必然存在整数对 x,y ,使它们满足贝祖等式:

ax+by = gcd(a, b) =d

解一定存在,根据数论中的相关定理。下面给出代码:

int extgcd(int a, int b, int& x, int& y) {
    int gcd = a;
    if (b != 0) {
        gcd = extgcd(b, a % b, y, x);
        y -= (a / b) * x;
    }
    else {
        x = 1; y = 0;
    }
    return gcd;
}

解二元一次不定方程(ax + by = c):

扩展欧几里德算法很大的一个用处就是在解不定方程。在计算时一般先是求出一对特解,再根据x与y的变化比例,构造通解。

注意我们求的所有解,都是整数解。

我们先计算 ax+by = gcd(a, b)  的解,等式两边同时乘以

 c / gcd(a,b) 

 原式子就被构造成

a x(c / gcd(a,b) )+by(c / gcd(a,b) ) = c

所以就求出了不定方程的一对特解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值