题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=1015
二部图
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
1
-
描述
-
二部图又叫二分图,我们不是求它的二分图最大匹配,也不是完美匹配,也不是多重匹配,而是证明一个图是不是二部图。证明二部图可以用着色来解决,即我们可以用两种颜色去涂一个图,使的任意相连的两个顶点颜色不相同,切任意两个结点之间最多一条边。为了简化问题,我们每次都从0节点开始涂色
-
输入
-
输入:
多组数据
第一行一个整数 n(n<=200) 表示 n个节点
第二行一个整数m 表示 条边
随后 m行 两个整数 u , v 表示 一条边
输出
- 如果是二部图输出 BICOLORABLE.否则输出 NOT BICOLORABLE. 样例输入
-
3 3 0 1 1 2 2 0 3 2 0 1 0 2
样例输出
-
NOT BICOLORABLE. BICOLORABLE.
-
输入:
【二分图简介】
二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。
准确地说:把一个图的顶点划分为两个不相交集 X 和 Y ,使得每一条边都分别连接X 、 Y 中的顶点。如果存在这样的划分,则此图为一个二分图。
二分图的一个等价定义是:不含有「奇数条边的环」的图。
图 1 是一个二分图。为了清晰,我们以后都把它画成图 2 的形式。
【思路】
如题目中所给的方法,我们从0节点依此对与他相联的边进行染色,有三种情况
1.如果节点没有染过色,就染上与它相反的颜色,推入队列,
2.如果节点染过色且相反,忽视掉
3.如果节点染过色且与父节点相同,证明不是二分图,return
【代码】
#include<iostream>
#include<queue>
#include<vector>
using namespace std;
const int maxn =210;
vector<int>G[maxn];
int color[maxn];
void init(){
for(int i=0;i<maxn ;i++){
G[i].clear();
color[i]=-1;
}
}
bool bicolorable(){//染色法
queue<int>Q;
color[0]=1;
Q.push(0);
while(!Q.empty()){
int v1 = Q.front();
Q.pop();
for(int i=0;i<G[v1].size();i++){
int v2 =G[v1][i];
if(color[v2]==-1){ //情况1
color[v2]=-color[v1];
Q.push(v2);
}
else if(color[v2]==color[v1]){ //情况3
return false;
}
}
}
return true;
}
int main(){
int n,m;
while(cin>>n){
cin>>m;
int a,b;
init();
for(int i=0;i<m;i++){
cin>>a>>b;
G[a].push_back(b);
G[b].push_back(a);
}
if(bicolorable())
cout<<"BICOLORABLE."<<endl;
else
cout<<"NOT BICOLORABLE."<<endl;
}
return 0;
}