《机器学习实战》第三章:决策树(2)树的构造

1. CH2-kNN(1)        
2. CH2-kNN(2)
3. CH2-kNN(3)
4. CH3-决策树(1)    
5. CH3-决策树(2)
6. CH3-决策树(3)
7. CH4-朴素贝叶斯(1)
8. CH4-朴素贝叶斯(2)
9. CH5-Logistic回归(1)
10. CH5-Logistic回归(2)
======== No More ========

 

决策树可以通过递归的方式来构造。在真正建树之前,我们先来写一些子模块的代码。

计算给定数据集的熵

我们先拿个例子来做数据集吧。就是下面这个海洋生物数据:

两个特征:(1)不复出水面是否可以生存(英语:no surfacing);(2)是否有脚蹼(英语:flippers)

一个标签:是否属于鱼类。有2中分类:YES / NO。

共5条数据。

导入这个数据集:

def createDataSet():
    dataSet = [[1, 1, 'YES'],
               [1, 1, 'YES'],
               [1, 0, 'NO'],
               [0, 1, 'NO'],
               [0, 1, 'NO']]
    featNames = ['no surfacing','flippers']
    return dataSet, featNames

其中,featNames中的两项分别是2个特征的名称。

以下是计算给定数据集dataSet的熵:

from math import log

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob, 2)
    return shannonEnt

labelCounts是个字典,对每一种分类,统计出现的次数。比如上面那个例子,就是 {'YES':2 , 'NO':3}

 

然后就是按照熵的计算公式来算了。要注意的是python的log函数,它的底数是放在第2个参数位置。

 

------------------------------------------------------------------------------------------------

划分数据集

这一小节来看看选取划分特征划分数据集的代码。

前者待会讲,先看后者的:

def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]  # chop out axis used for splitting
            reducedFeatVec.extend(featVec[axis + 1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

splitDataSet函数用来划分数据集,三个参数:

dataSet是待划分的数据集,按照下标为axis的特征来划分。

划分的结果是dataSet数据集中,下标为axis的特征的值为value的数据组成的子数据集。

要注意的是,获得子数据集,数据是不含下标为axis的特征的,因为已经选过这个特征了,所以要把它剔除掉。

测试一下:

dataSet, feats = createDataSet()
print splitDataSet(dataSet, 0, 1) #按特征0划分,特征值为1
print splitDataSet(dataSet, 0, 0) #按特征0划分,特征值为0

 

接下来就是选取最佳特征了。

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1  #每条数据的特征数量
    baseEntropy = calcShannonEnt(dataSet)  #划分前的熵
    bestInfoGain = 0.0;  #记录最高信息增益
    bestFeature = -1  #记录最佳特征
    for i in range(numFeatures):  #遍历每个特征
        featList = [data[i] for data in dataSet]  #把所有数据的该特征值抽出来放到一个list里面
        uniqueVals = set(featList)  #利用set找出该特征所有不同的值
        newEntropy = 0.0
        for value in uniqueVals:  #按这些不同的特征值,分别划分成子数据集
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet) / float(len(dataSet))  #子数据集的权重
            newEntropy += prob * calcShannonEnt(subDataSet)  #子数据集的权重*熵
        infoGain = baseEntropy - newEntropy  #计算信息增益
        if infoGain > bestInfoGain:  #更新最高信息增益和最佳特征
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature  #返回最佳特征的下标

python的set函数可以把一个list里出现过的不同的值摘取出来,就是去重的作用。

仍然测试一下:

dataSet, feats = createDataSet()
print chooseBestFeatureToSplit(dataSet)

结果是0。也就是说最初那5条数据,最佳特征是特征0,也就是“不浮在水面是否可以生存”。得按这个特征划分。

 

------------------------------------------------------------------------------------------------

递归构建决策树

构造决策树的大致流程:

-- 得到原始数据集,选出最佳特征,按照它,划分成多个子数据集,生成多个分支

-- 对于每个子数据集,又选出最佳特性,互粉多个子数据集,生成多个分支

所以,我们可以采用递归的原则处理数据集。

递归的结束条件是:程序遍历完所有可用于划分数据集的属性,或者每个分支下的所有数据都具有相同的分类(即标签)

 

这时会出现一个问题:我们用的是ID3算法,每在一个节点进行划分,都会“消耗”掉一个特征。可以这样想,决策树每往下构造一层,能用于划分数据集的特征就少一个。那么,如果到某一个节点,没有特征可用了,而此时这堆数据的标签并不是同一个,怎么办?很简单,投票咯,少数服从多数。

import operator
def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

这个majorityCnt函数的作用,就是找出classList这堆标签里,出现次数最多的哪个标签。

classCount是个字典,记录每个标签出现的次数。

sorted函数classCount按照键值对的值进行降序排序,返回一个tuple的list。sortedClassCount[0][0]就是出现次数最多的那个标签了。

 

现在Boss就可以登场了:创建树!

def createTree(dataSet, featNames):
    classList = [data[-1] for data in dataSet]  #当前数据集的所有标签
    if classList.count(classList[0]) == len(classList):  #如果这堆标签全都一样的话,返回这个标签。
        return classList[0]
    if len(dataSet[0]) == 1:  #如果当前数据集一个特征都不剩了,那就不用再划分下去了
        return majorityCnt(classList)  #直接投票,返回出现次数最多的标签
    bestFeat = chooseBestFeatureToSplit(dataSet)  #选出用于划分的最佳属性
    bestFeatName = featNames[bestFeat]  #最佳属性的属性名称
    myTree = {bestFeatName:{}}  #字典:记录最佳属性对应的标签种类、出现次数情况
    del(featNames[bestFeat])  #在属性名称列表中剔除最佳属性
    featValues = [data[bestFeat] for data in dataSet]  #当前数据集中最佳属性的所有属性值
    uniqueVals = set(featValues) #最佳属性的不同属性值
    for value in uniqueVals:
        subfeatNames = featNames[:]  #去除最佳属性后的属性名称列表
        # 构建最佳属性的值为value的子树
        myTree[bestFeatName][value] = createTree(splitDataSet(dataSet, bestFeat, value),subfeatNames)
    return myTree

很神奇的地方在于三个return中,前两个返回类型是标签(integer),而第三个返回类型是一棵树(dict)。

这是因为构建一个叶节点时,我们需要知道它这堆数据对应的是哪个标签;而构建一个内部节点时,我们需要知道划分之后它有哪些子节点。

另外...哎,你说C++啥的,你怎样让一个函数里不同分支返回不同的数据类型嘛?联合体吗?python大法好!

 

现在我们来测试一下,看构造出来的是个什么玩意儿:

dataSet, feats = createDataSet()
theTree = createTree(dataSet, feats)
print theTree

 

所以这是个什么东西?

画出来就明了了:

 

好了,代码就是这些了。用的时候只要在最开始的时候,按格式把自己的数据集导入程序就可以了。

 

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值