粗排、召回和精排是推荐系统中的三个紧密相连且顺序执行的环节,它们共同构成了推荐系统的主要链路。以下是对这三个环节的详细介绍:
一、召回(Recall)
召回是推荐系统的第一个环节,主要根据用户的部分特征(如历史行为、兴趣偏好等),从海量的物品库中快速找回一小部分用户潜在感兴趣的物品。召回环节强调快速和低延迟,因为需要处理的数据量极大。召回的结果通常是一个较大的候选集,包含多个可能符合用户兴趣的物品。召回的目标是从千万级甚至亿级的候选中召回几千个物品,这些物品会作为后续排序阶段的输入。
二、粗排(Coarse Ranking)
粗排位于召回和精排之间,是对召回结果的一个初步筛选和排序。由于召回返回的候选集数量仍然较多,直接进行精排可能会导致计算量过大,因此需要通过粗排来减少候选集的数量。粗排使用相对简单的模型和较少的特征,对候选集进行快速打分和排序,保留分数较高的部分物品进入精排环节。粗排的目的是在保证一定精准度的前提下,减少后续计算量,提高排序效率。
三、精排(Fine Ranking/Precise Ranking)
精排是推荐系统的核心环节,负责对粗排筛选出的候选集进行精确打分和排序。精排使用复杂的模型和丰富的特征,以尽可能高的准确度预测用户对每个物品的兴趣程度。精排强调准确性,通过精细的模型和算法,对候选集进行个性化排序,最终生成推荐列表展示给用户。精排的结果通常是推荐系统最终输出的top K个物品(K一般是个位数),这些物品是根据用户的兴趣偏好和物品的特征进行精确匹配和排序得出的。
四、整体流程与示例
以电商平台为例,假设平台上有数百万种商品,用户小明在浏览商品时,推