【ICPC-402】poj 2299 Ultra-QuickSort

点击打开poj2299

思路: 离散化+树状数组
分析:
1 题目的意思就是要求逆序数对
2 题目的输入个数有500000的规模但是每个数的最大值为999999999,因此我们需要离散化这些数据
3 对于数据9 1 0 5 4我们离散化成5 2 1 4 3
那么对于输入一个树a[i]我们去求一下它的离散化后的id,然后去求前面比这个id大的个数
4 由于getSum(x)函数的求和是求[1,x]而不是[x,MAXN),所以我们可以换成求小于等于id的个数即getSum(id),然后i-1-getSum(id)就是比id大的个数,最后在更新一下treeNum[id]

代码:

 


#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

const int MAXN = 500010;

int n;
int tmpNum[MAXN] , num[MAXN];
int treeNum[MAXN];

int lowbit(int x){
    return x&(-x);
}

int getSum(int x){
    int sum = 0;
    while(x){
        sum += treeNum[x]; 
        x -= lowbit(x);
    }
    return sum;
}

void add(int x , int val){
    while(x < MAXN){
         treeNum[x] += val; 
         x += lowbit(x);
    }
}

int search(int x , int len){
    int left = 1;
    int right = len;
    while(left <= right){
         int mid = (left+right)>>1; 
         if(num[mid] == x)
             return mid;
         else if(num[mid] < x)
             left = mid+1;
         else
             right = mid-1;
    }
}

long long solve(){
    long long ans = 0;
    memcpy(tmpNum , num , sizeof(num));
    memset(treeNum , 0 , sizeof(treeNum));
    sort(num+1 , num+1+n);
    int len = unique(num+1 , num+1+n)-(num+1); 
    for(int i = 1 ; i <= n ; i++){
        int id = search(tmpNum[i] , len); 
        ans += i-getSum(id)-1;
        add(id , 1);
    }
    return ans;
}

int main(){
    while(scanf("%d" , &n) && n){
         for(int i = 1 ; i <= n ; i++) 
             scanf("%d" , &num[i]);
         printf("%lld\n" , solve());
    }
    return 0;
}


 

 

 

 

 

6/2025 MP4 出版 |视频: h264, 1280x720 |音频:AAC,44.1 KHz,2 Ch 语言:英语 |持续时间:12h 3m |大小: 4.5 GB 通过实际 NLP 项目学习文本预处理、矢量化、神经网络、CNN、RNN 和深度学习 学习内容 学习核心 NLP 任务,如词汇切分、词干提取、词形还原、POS 标记和实体识别,以实现有效的文本预处理。 使用 One-Hot、TF-IDF、BOW、N-grams 和 Word2Vec 将文本转换为向量,用于 ML 和 DL 模型。 了解并实施神经网络,包括感知器、ANN 和数学反向传播。 掌握深度学习概念,如激活函数、损失函数和优化技术,如 SGD 和 Adam 使用 CNN 和 RNN 构建 NLP 和计算机视觉模型,以及真实数据集和端到端工作流程 岗位要求 基本的 Python 编程知识——包括变量、函数和循环,以及 NLP 和 DL 实现 熟悉高中数学——尤其是线性代数、概率和函数,用于理解神经网络和反向传播。 对 AI、ML 或数据科学感兴趣 – 不需要 NLP 或深度学习方面的经验;概念是从头开始教授的 描述 本课程专为渴望深入了解自然语言处理 (NLP) 和深度学习的激动人心的世界的人而设计,这是人工智能行业中增长最快和需求最旺盛的两个领域。无论您是学生、希望提升技能的在职专业人士,还是有抱负的数据科学家,本课程都能为您提供必要的工具和知识,以了解机器如何阅读、解释和学习人类语言。我们从 NLP 的基础开始,从头开始使用文本预处理技术,例如分词化、词干提取、词形还原、停用词删除、POS 标记和命名实体识别。这些技术对于准备非结构化文本数据至关重要,并用于聊天机器人、翻译器和推荐引擎等实际 AI 应用程序。接下来,您将学习如何使用 Bag of Words、TF-IDF、One-Hot E
内容概要:本文全面介绍了虚幻引擎4(UE4)的功能、应用场景、学习准备、基础操作、蓝图系统、材质与纹理、灯光与渲染等方面的内容。UE4是一款由Epic Games开发的强大游戏引擎,支持跨平台开发,广泛应用于游戏、虚拟现实、增强现实、建筑设计等领域。文章详细阐述了学习UE4前的硬件和软件准备,包括最低和推荐配置,以及Epic Games账户创建、启动器安装等步骤。接着介绍了UE4的界面组成和基本操作,如视口、内容浏览器、细节面板等。蓝图系统作为UE4的可视化脚本工具,极大降低了编程门槛,通过实例演练展示了蓝图的应用。材质与纹理部分讲解了材质编辑器的使用和纹理导入设置,灯光与渲染部分介绍了不同类型的灯光及其应用,以及后期处理和高质量图片渲染的方法。最后推荐了一些学习资源,包括官方文档、教程网站、论坛社区和书籍。 适合人群:对游戏开发感兴趣、希望学习UE4的初学者和有一定编程基础的研发人员。 使用场景及目标:①掌握UE4的基本操作和界面认知,为后续深入学习打下基础;②通过蓝图系统快速创建游戏逻辑,降低编程门槛;③学会材质与纹理的创建和设置,提升游戏画面的真实感;④掌握灯光与渲染技术,营造逼真的游戏氛围;⑤利用推荐的学习资源,加速UE4的学习进程。 阅读建议:本文内容详尽,涵盖了UE4的各个方面,建议读者按照章节顺序逐步学习,先从基础操作入手,再深入到蓝图、材质、灯光等高级功能。在学习过程中,结合实际项目进行练习,遇到问题时参考官方文档或社区论坛,不断积累经验和技能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值