定义:
红黑树本质上是一棵二叉查找树,但在二叉查找树的基础上,每个节点增加了一位存储来表示节点的颜色。有关二叉查找树的介绍在前面博文《二叉查找树》已经介绍过了,这里不再进行讲解。
红黑树的性质:
- 每个节点或是红色的,或是黑色的。
- 根节点是黑色的。
- 每个叶节点(NULL)是黑色的。
- 如果一个节点是红色的,则它的两个孩子节点都是黑色的。
- 对每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。
红黑树的结构图:
旋转
当对红黑树进行插入和删除操作时,会违背红黑树的性质,为了维护这些性质,必须要改变树中某些节点的颜色以及指针结构。指针结构的修改时通过旋转来完成的,这是一种能保持二叉查找树性质的查找树局部操作。
左旋转:
当在某个节点x上做左旋转操作时,假设它的右孩子为y而不是NULL,左旋转以x到y的链为“支轴”进行。它使y成为该子树的新的根节点,x成为y的左孩子,y的左孩子成为x的右孩子。
LEFT_ROTATE(T,x)
y = right[x] //获取右孩子
rihgt[x] = left[y] //设置x的右孩子为y的左孩子
if left[y] != NIL
then parent[left[y]] = x
parent[y] = parent[x] //设置y的父节点为x的父节点
if parent[x] == NIL
then root[T] = y
else if x==left[parent[x]
then left[parent[x]] = y
else right[[parent[x]] = y
left[y] = x //设置y的左孩子为x
parent[x] =y
右旋转:
右旋转与左旋转的描述差不多,具体见下面结构图
RIGHT_ROTATE(T,y)
x = left[y] //获取左孩子
left[y] = right[x] //设置y的左孩子为x的右孩子
if right[x] != NIL
then parent[right[x]] = y
parent[x] = parent[y] //设为x的父节点为y的父结点
if parent[y] == NIL
then root = x
else if y== left[parent[y]]
then left[parent[y]] = x
else right[parent[y]] = x
right[x] = y //设置x的右孩子为y
parent[y] = x
插入操作:
红黑树的插入操作类似于二叉查找树的插入操作,只是在它的基础上进行改进,先把节点按照二叉查找树的插入方法进行插入,再把该插入的节点标记为红色(为了满足性质5),为了保证插入节点后能够维持红黑树的性质,我们必须调用一个辅助程序RB_INSERT_FIXUP来对结点重新着色并旋转,使得满足红黑树的性质。

本文介绍了红黑树的定义,包括其性质和结构图,并详细阐述了红黑树的左旋、右旋操作,以及插入和删除操作的处理方式,特别是针对插入后如何通过旋转和重新着色来维护红黑树的性质。
最低0.47元/天 解锁文章
467

被折叠的 条评论
为什么被折叠?



