关闭

Codeforces E. Qwerty78 Trip 【组合数学】

326人阅读 评论(0) 收藏 举报
分类:

题目链接:E. Qwerty78 Trip
n*m的格子,其中有一个格子是坏的,问你从(1, 1) - (n, m)有多少种走法。

填满n * m的矩阵,发现这就是一个杨辉三角的组合数问题。
在格子没有坏的情况下,(1, 1) - (n, m)的走法dp[1][1][n][m] = C(n+m-2, m-1)。
当(x, y)坏的情况下,少出的情况就是dp[1][1][x][y] * dp[x][y][n][m]。
我们把(x, y)看做(1, 1)然后求一下就好了。套个逆元就OK了。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <iostream>
#include <algorithm>
#include <queue>
#include <string>
#include <stack>
#define CLR(a, b) memset(a, b, sizeof(a))
#define PI acos(-1.0)
#define fi first
#define se second
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
const int MAXN = 2 * 1e5 + 1;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
void add(LL &x, LL y) { x += y; x %= MOD; }
LL pow_mod(LL a, int n) {
    LL ans = 1;
    while(n) {
        if(n & 1) {
            ans = ans * a % MOD;
        }
        a = a * a % MOD;
        n >>= 1;
    }
    return ans;
}
LL f[MAXN];
LL C(int n, int m) {
    return f[n] * pow_mod(f[n-m], MOD-2) % MOD * pow_mod(f[m], MOD-2) % MOD;
}
int n, m;
int main()
{
    f[0] = 1LL;
    for(int i = 1; i <= 200000; i++) {
        f[i] = f[i-1] * i % MOD;
    }
    int t; scanf("%d", &t);
    while(t--) {
        scanf("%d%d", &n, &m);
        int x, y; scanf("%d%d", &x, &y);
        if(x == 1 && y == 1) {
            printf("0\n");
            continue;
        }
        printf("%lld\n", (C(n+m-2, m-1) - C(n+m-(x-1)-(y-1)-2, m-(y-1)-1) * C(x+y-2, y-1) % MOD + MOD) % MOD);
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:511863次
    • 积分:19513
    • 等级:
    • 排名:第452名
    • 原创:1484篇
    • 转载:12篇
    • 译文:0篇
    • 评论:162条
    文章分类