怎样理解TensorFlow中的Tensor?

原创 2017年07月04日 20:49:28

Tensor是TensorFlow最基础和最核心的数据结构,TensorFlow用Tensor这种数据结构来表示所有的数据,TensorFlow的computation graph(计算图)中的节点之间只用Tensor传递数据。Tensor翻译成中文是“张量”,在数学和物理学中运用较多,那么TensorFlow中的Tensor到底是什么呢?本文将解释这个概念。

 

Tensor的rank(


Tensor的秩和矩阵的秩不一样,Tensor的秩是指这个数据结构的维数。比如一个标量就是一个秩为0的Tensor,一个向量就是一个秩为1的Tensor,一个矩阵就是一个秩为2的Tensor,一个3维数组就是一个秩为3的Tensor,如下表所示:


Tensor的shape(形状)


描述一个Tensor,光知道维数还不够,还必须知道每一维的大小,TensorFlow用shape来定义它,比如[5]表示有5个元素的向量,[3, 4]表示第一维的大小为3,第二维的大小为4的矩阵,参见下表:


Tensor的数据类型


每个Tensor有一个固定的数据类型。常用的数据类型有:DT_FLOAT,DT_DOUBLE,DT_INT32等,DT即Data Type之意。TensorFlow支持的所有数据类型如下表所示:


如何知道一个Tensor的shape


给定一个复杂的Tensor,我们怎样知道它的shape呢?下面通过一个简单的例子来描述。

假如有这样一个Tensor

t = [[[2,3], [4,5], [6,7]], [[8,9], [10,11], [12,13]], [[14,15], [16,17], [18,19]]]

我们将它表示成为一颗树,来辅助计算它的shape:


我们可以看到,第4层(即最底层)的节点2个为一组,第3层的节点3个为一组,第2层的节点3个为一组,这样该Tensor的shape即为[3, 3, 2]。除去根节点,树的层数即是该Tensor的秩,为3。


结语


上面说了这么多,好像Tensor是一个很高大上的东西,其实不然,它就是一个多维数组而已。比如你在C++里定义一个多维数组:

int a[2][3][4][5][6];

将它看作一个Tensor,则它的秩为5,shape为[2, 3, 4, 5, 6]。



更多文章请关注我的公众号:机器学习交流

Tensorflow入门:数据结构和编程思想

http://blog.csdn.net/lingerlanlan/article/details/61616906 Tensorflow入门:数据结构和编程思想 引言:  最近...

TensorFlow - Tensor理解与使用

如何理解TensorFlow中的tensorflyfishtensor 张量 英 [‘tensə; -sɔː] 美 [‘tɛnsɚ]What is a Tensor? Tensors are ...

机器学习中的有监督学习,无监督学习,半监督学习

在机器学习(Machine learning)领域,主要有三类不同的学习方法: 监督学习(Supervised learning)、 非监督学习(Unsupervised learning)、 半监督...

人脸特征点提取算法包对比(ASM/深度学习)

将现有的ASM公开算法包进行对比,且以ASMLibrary为例,进行了简单实验,保存人脸68个特征点坐标。另外也罗列了深度学习在人脸特征点检测的相关英文教程,并进行了简单总结。...

关于Tensorflow计算图与Tensor的理解

关于Tensorflow计算模型tensorflow的编程和我以往接触的编程方式有很大差异。以前的编程,无论是编译类型的语言还是脚本语言,都是一步一步的,变量计算后,就会得到结果,比如c=a+b,当执...
  • qian99
  • qian99
  • 2017年04月23日 14:51
  • 2390

tensorflow的张量(tensor)的理解

以下内容转载至:http://blog.csdn.net/pandamax/article/details/63684633 自己通过网上查询的有关张量的解释,稍作整理。 ...

关于Tensorflow计算图与Tensor的理解

关于Tensorflow计算模型 tensorflow的编程和我以往接触的编程方式有很大差异。以前的编程,无论是编译类型的语言还是脚本语言,都是一步一步的,变量计算后,就会得到结果,比如c=a+...

tensorflow+入门笔记︱基本张量tensor理解与tensorflow运行结构

Gokula Krishnan Santhanam认为,大部分深度学习框架都包含以下五个核心组件:张量(Tensor)基于张量的各种操作计算图(Computation Graph)自动微分(Autom...
  • intjun
  • intjun
  • 2017年11月11日 17:46
  • 120

tensorflow+入门笔记︱基本张量tensor理解与tensorflow运行结构

Gokula Krishnan Santhanam认为,大部分深度学习框架都包含以下五个核心组件: 张量(Tensor) 基于张量的各种操作 计算图(Computation G...

tensorflow学习笔记(一):基本知识之tensor,operation和Session

1、tensor之———变量(variable)、常量(constant)、占位符(Placeholder) 2、Session的简介 3、Session中run的使用以及fetch和feed 4、交...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:怎样理解TensorFlow中的Tensor?
举报原因:
原因补充:

(最多只允许输入30个字)