- 博客(620)
- 资源 (15)
- 收藏
- 关注

原创 孟郎诗词网3.0版本问题总结
一.ElasticSearch1. ES报错java.lang.RuntimeException: can not run elasticsearch as root有个比较魔幻的点,貌似必须先用root启动并报错之后,再进行后面的操作,才可以正常执行https://blog.csdn.net/weixin_41931868/article/details/87859728https://blog.csdn.net/abcdad/article/details/937448982.ES配置外网
2021-06-17 13:38:23
1459

原创 孟郎诗词网2.0版本问题总结
centos7.6安装yum方式安装jdk:https://blog.csdn.net/qq_34885405/article/details/93030373 Springboot整合Mybatis 出现:Invalid bound statement (not found):https://blog.csdn.net/sacredness/article/details/82533097 ...
2019-10-02 15:26:33
504

原创 孟郎诗词网1.0版本前端部分总结
概述经过大概13天的努力,孟郎诗词网在大年初一顺利开放,今天也已经开放有一段时间了,在建立网站的过程中还是遇到了很多问题的,在此总结一下,以便以后对网站进行重制的时候能够有所借鉴,提高开发效率。导航部分整体效果:整体难度不是很大,为了适应不同尺寸电脑,我对导航文字之间的文字用js进行了定量处理://头部布局 var topLink = docume...
2019-02-26 16:26:01
944
1

原创 hdu 2544(所有最短路算法总结)
最短路 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 82480 Accepted Submission(s): 35690 Problem Description在每年的校赛里,所有进入决赛的同学都会获...
2018-05-12 09:35:21
1648
原创 美团大数据开发转正实习面经(已OC)
你说你用到了Spark那你介绍一下Spark的组件和整体架构(结合Dirver 和 Executor各自的作用)介绍一下Spark的RDD(分布式弹性数据集、基本的数据抽象、封装了计算逻辑、RDD代码层面包含的东西即RDD的属性、有了RDD的依赖就可以生成DAG图)
2023-04-02 11:25:40
1539
2
原创 react-router-dom v6快速上手
react-router: 路由的核心库,提供了很多的:组件、钩子。包含react-router所有内容,并添加一些专门用于 DOM 的组件,例如等。等。与React Router 5.x 版本相比,改变了什么?内置组件的变化:移除,新增等。变为等。useParams、、useMatch等。官方明确推荐函数式组件了!!!…
2022-10-24 09:39:49
809
原创 Pytorch深度学习基础 实战天气图片识别(基于ResNet50预训练模型,超详细)
🔥本项目使用Pytroch,并基于ResNet50模型,实现了对天气图片的识别,过程详细,十分适合基础阶段的同学阅读。项目目录结构核心步骤数据处理准备配置文件构建自定义DataSet及Dataloader构建模型训练模型编写预测模块效果展示。
2022-10-15 10:22:40
16199
30
原创 fasttext工具的使用及迁移学习
cooking.stackexchange.txt中的每一行都包含一个标签列表,后跟相应的文档, 标签列表以类似"__label__sauce __label__cheese"的形式展现, 代表有两个标签sauce和cheese, 所有标签__label__均以前缀开头,这是fastText识别标签或单词的方式. 标签之后的一段话就是文本信息.如: How much does potato starch affect a cheese sauce recipe?使用fasttext工具训练词向量的过程。..
2022-08-11 16:31:58
1097
原创 深度学习 Transformer架构解析
2018年10月,Google发出一篇论文《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》, BERT模型横空出世, 并横扫NLP领域11项任务的最佳成绩!而在BERT中发挥重要作用的结构就是Transformer, 之后又相继出现XLNET,roBERT等模型击败了BERT,但是他们的核心没有变,仍然是:Transformer.相比之前占领市场的LSTM和GRU模型,Transformer有
2022-08-10 15:24:18
14854
1
原创 深度学习 RNN架构解析
RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出.一般单层神经网络结构:RNN单层网络结构:以时间步对RNN进行展开后的单层网络结构:因为RNN结构能够很好利用序列之间的关系, 因此针对自然界具有连续性的输入序列, 如人类的语言, 语音等进行很好的处理, 广泛应用于NLP领域的各项任务, 如文本分类, 情感分析, 意图识别, 机器翻译等.下面我们将以一个用户意图
2022-08-04 09:58:58
6062
2
原创 自然语言处理 文本预处理(下)(张量表示、文本数据分析、文本特征处理等)
将一段文本使用张量进行表示,其中一般将词汇为表示成向量,称作词向量,再由各个词向量按顺序组成矩阵形成文本表示.["人生","该","如何","起头"]==>#每个词对应矩阵中的一个向量[[1.32,4,32,0,32,5.2],[3.1,5.43,0.34,3.2],[3.21,5.32,2,4.32],[2.54,7.32,5.12,9.54]]https假设给定分词列表中间翻译结果。......
2022-08-01 14:24:46
1285
原创 自然语言处理 文本预处理(上)(分词、词性标注、命名实体识别等)
分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。我们知道,在英文的行文中,单词之间是以空格作为自然分界符的,而中文只是字、句和段能通过明显的分界符来简单划界,唯独词没有一个形式上的分界符,分词过程就是找到这样分界符的过程.命名实体通常我们将人名,地名,机构名等专有名词统称命名实体.如周杰伦,黑山县,孔子学院,24辊方钢矫直机.顾名思义,命名实体识别(NamedEntityRecognition,简称NER)就是识别出一段文本中可能存在的命名实体.词性。...
2022-08-01 08:29:14
2314
1
原创 Pytorch 入门
我们首先定义一个Pytorch实现的神经网络#导入若干工具包importtorchimporttorch.nnasnnimporttorch.nn.functionalasF#定义一个简单的网络类classNet(nn.Module)模型中所有的可训练参数,可以通过net.parameters()来获得.假设图像的输入尺寸为32*32input=torch.randn(1,1,32,32)#4个维度依次为注意维度。...
2022-07-28 15:27:54
8568
2
原创 OpenCV 视频操作
Meanshift和camshift算法都各有优势,自然也有劣势Meanshift算法简单,迭代次数少,但无法解决目标的遮挡问题并且不能适应运动目标的的形状和大小变化。camshift算法可适应运动目标的大小形状的改变,具有较好的跟踪效果,但当背景色和目标颜色接近时,容易使目标的区域变大,最终有可能导致目标跟踪丢失。httpshttpshttpshttpshttps。...
2022-07-22 15:56:45
2842
原创 图像处理 图像特征提取与描述
SIFT在图像的不变特征提取方面拥有无与伦比的优势,但并不完美,仍然存在实时性不高,有时特征点较少,对边缘光滑的目标无法准确提取特征点等缺陷,自SIFT算法问世以来,人们就一直对其进行优化和改进,其中最著名的就是SURF算法。...
2022-07-22 15:10:42
5178
原创 OpenCV图像处理(下) 边缘检测+模板匹配+霍夫变换
所谓的模板匹配,就是在给定的图片中查找和模板最相似的区域,该算法的输入包括模板和图片,整个任务的思路就是按照滑窗的思路不断的移动模板图片,计算其与图像中对应区域的匹配度,最终将匹配度最高的区域选择为最终的结果。A点位于图像的边缘,在其梯度变化方向,选择像素点B和C,用来检验A点的梯度是否为极大值,若为极大值,则进行保留,否则A点被抑制,最终的结果是具有“细边”的二进制图像。圆半径确定原理圆心到圆周上的距离(半径)是相同的,确定一个阈值,只要相同距离的数量大于该阈值,就认为该距离是该圆心的半径。...
2022-07-21 15:58:41
2450
原创 OpenCV图像处理(中) 图像平滑+直方图
图像平滑从信号处理的角度看就是去除其中的高频信息,保留低频信息。因此我们可以对图像实施低通滤波。低通滤波可以去除图像中的噪声,对图像进行平滑。根据滤波器的不同可分为均值滤波,高斯滤波,中值滤波,双边滤波。...
2022-07-21 10:30:26
2470
原创 OpenCV图像处理(上)几何变换+形态学操作
那什么是图像的仿射变换,如下图所示,图1中的点1,2和3与图二中三个点一一映射,仍然形成三角形,但形状已经大大改变,通过这样两组三点(感兴趣点)求出仿射变换,接下来我们就能把仿射变换应用到图像中所有的点中,就完成了图像的仿射变换。因为开运算带来的结果是放大了裂缝或者局部低亮度的区域,因此,从原图中减去开运算后的图,得到的效果图突出了比原图轮廓周围的区域更明亮的区域,且这一操作和选择的核的大小相关。需要注意的是,对于图像而言,宽度方向是x,高度方向是y,坐标的顺序和图像像素对应下标一致。...
2022-07-21 09:27:57
1197
原创 图像处理 OpenCV简介
OpenCV是一款由Intel公司俄罗斯团队发起并参与和维护的一个计算机视觉处理开源软件库,支持与计算机视觉和机器学习相关的众多算法,并且正在日益扩展。OpenCV的优势编程语言OpenCV基于C++实现,同时提供python,Ruby,Matlab等语言的接口。OpenCV-Python是OpenCV的PythonAPI,结合了OpenCVC++API和Python语言的最佳特性。跨平台可以在不同的系统平台上使用,包括Windows,Linux,OSX,Android和iOS。...
2022-07-18 15:14:10
14895
4
原创 计算机视觉 目标分割
一、目标分割简介1.1 图像分割的定义1.2 任务类型1.2.1 任务描述1.2.2 任务类型1.3 常用的开源数据集1.3.1 VOC数据集1.3.2 城市风光Cityscapes数据集1.4 评价指标1.4.1 像素精度1.4.2 平均像素精度1.4.3 平均交并比二、语义分割:FCN和UNet1. FCN网络1.1 网络结构1.1.1 全卷积部分1.1.2 上采样部分1.2 跳层连接1.3 总结2. Unet网络三、UNet案例1.1 任务及数据集简介1.2
2022-07-17 10:44:36
2833
8
原创 目标检测 YOLO系列算法
YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好,所以在工业界也十分受欢迎,接下来我们介绍YOLO 系列算法。Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别,整个系统如下图所示:首先将输入图片resize到448x448,然后送入CNN网络,最后处理网络预测结果得到检
2022-07-14 15:56:23
15168
原创 目标检测 Faster-RCNN网络
在R-CNN和Fast RCNN的基础上,在2016年提出了Faster RCNN网络模型,在结构上,Faster RCNN已经将候选区域的生成,特征提取,目标分类及目标框的回归都整合在了一个网络中,综合性能有较大提高,在检测速度方面尤为明显。接下来我们给大家详细介绍fasterRCNN网络模型。网络基本结构如下图所示:Faster RCNN可以看成是区域生成网络(RPN)与Fast RCNN的组合,其中区域生成网络(RPN)替代选择性搜索来生成候选区域,Fast RCNN用来进行目标检测。FasterRC
2022-07-12 15:54:24
2347
2
原创 目标检测 R-CNN网络基础
Overfeat方法使用滑动窗口进行目标检测,也就是使用滑动窗口和神经网络来检测目标。滑动窗口使用固定宽度和高度的矩形区域,在图像上“滑动”,并将扫描结果送入到神经网络中进行分类和回归。例如要检测汽车,就使用下图中红色滑动窗口进行扫描,将所有的扫描结果送入网络中进行分类和回归,得到最终的汽车的检测结果。这种方法类似一种暴力穷举的方式,会消耗大量的计算力,并且由于窗口大小问题可能会造成效果不准确。2014年提出R-CNN网络,该网络不再使用暴力穷举的方法,而是使用候选区域方法(region proposal
2022-07-10 14:57:56
538
原创 计算机视觉 目标检测概述
目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标,并确定它们的类别和位置。目标检测中能检测出来的物体取决于当前任务(数据集)需要检测的物体有哪些。假设我们的目标检测模型定位是检测动物(牛、羊、猪、狗、猫五种结果),那么模型对任何一张图片输出结果不会输出鸭子、书籍等其它类型结果。目标检测的位置信息一般由两种格式(以图片左上角为原点(0,0)):1、极坐标表示:(xmin, ymin, xmax, ymax)2、中心点坐标:(x_center, y_center, w, h)假设在
2022-07-10 14:36:08
1304
原创 深度学习 模型微调
如何在只有6万张图像的MNIST训练数据集上训练模型。学术界当下使用最广泛的大规模图像数据集ImageNet,它有超过1,000万的图像和1,000类的物体。然而,我们平常接触到数据集的规模通常在这两者之间。假设我们想从图像中识别出不同种类的椅子,然后将购买链接推荐给用户。一种可能的方法是先找出100种常见的椅子,为每种椅子拍摄1,000张不同角度的图像,然后在收集到的图像数据集上训练一个分类模型。另外一种解决办法是应用迁移学习(transfer learning),将从源数据集学到的知识迁移到目标数据集上
2022-07-08 11:22:41
1851
原创 计算机视觉 图像增强
大规模数据集是成功应用深度神经网络的前提。例如,我们可以对图像进行不同方式的裁剪,使感兴趣的物体出现在不同位置,从而减轻模型对物体出现位置的依赖性。我们也可以调整亮度、色彩等因素来降低模型对色彩的敏感度。可以说,在当年AlexNet的成功中,图像增强技术功不可没。图像增强(image augmentation)指通过剪切、旋转/反射/翻转变换、缩放变换、平移变换、尺度变换、对比度变换、噪声扰动、颜色变换等一种或多种组合数据增强变换的方式来增加数据集的大小。图像增强的意义是通过对训练图像做一系列随机改变,来产
2022-07-08 10:40:25
1908
原创 图像分类模型 ResNet(残差网络)
网络越深,获取的信息就越多,特征也越丰富。但是在实践中,随着网络的加深,优化效果反而越差,测试数据和训练数据的准确率反而降低了。针对这一问题,何恺明等人提出了残差网络(ResNet)在2015年的ImageNet图像识别挑战赛夺魁,并深刻影响了后来的深度神经网络的设计。假设 F(x) 代表某个只包含有两层的映射函数, x 是输入, F(x)是输出。假设他们具有相同的维度。在训练的过程中我们希望能够通过修改网络中的 w和b去拟合一个理想的 H(x)(从输入到输出的一个理想的映射函数)。也就是我们的目标是修改F
2022-07-08 10:22:59
7114
原创 图像分类模型 GoogLeNet
GoogLeNet的名字不是GoogleNet,而是GoogLeNet,这是为了致敬LeNet。GoogLeNet和AlexNet/VGGNet这类依靠加深网络结构的深度的思想不完全一样。GoogLeNet在加深度的同时做了结构上的创新,引入了一个叫做Inception的结构来代替之前的卷积加激活的经典组件。GoogLeNet在ImageNet分类比赛上的Top-5错误率降低到了6.7%。GoogLeNet中的基础卷积块叫作Inception块,得名于同名电影《盗梦空间》(Inception)。Incept
2022-07-08 09:53:23
904
原创 图像分类模型 VGG
2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC2014比赛分类项目的第二名,主要贡献是使用很小的卷积核(3×3)构建卷积神经网络结构,能够取得较好的识别精度,常用来提取图像特征的VGG-16和VGG-19。VGG可以看成是加深版的AlexNet,整个网络由卷积层和全连接层叠加而成,和AlexNet不同的是,VGG中使用的都是小尺寸的卷积核(3×3),其网络架构如下图
2022-07-08 09:16:45
2109
原创 图像分类模型 AlexNet
2012年,AlexNet横空出世,该模型的名字源于论文第一作者的姓名Alex Krizhevsky 。AlexNet使用了8层卷积神经网络,以很大的优势赢得了ImageNet 2012图像识别挑战赛。它首次证明了学习到的特征可以超越手工设计的特征,从而一举打破计算机视觉研究的方向。AlexNet与LeNet的设计理念非常相似,但也有显著的区别,其网络架构如下图所示:该网络的特点是:AlexNet包含8层变换,有5层卷积和2层全连接隐藏层,以及1个全连接输出层AlexNet第一层中的卷积核形状是11×11。
2022-07-08 08:59:47
1524
原创 计算机视觉 图像分类简介
图像分类实质上就是从给定的类别集合中为图像分配对应标签的任务。也就是说我们的任务是分析一个输入图像并返回一个该图像类别的标签。假定类别集为categories = {dog, cat, panda},之后我们提供一张图片给分类模型,如下图所示:分类模型给图像分配多个标签,每个标签的概率值不同,如dog:95%,cat:4%,panda:1%,根据概率值的大小将该图片分类为dog,那就完成了图像分类的任务。该数据集是手写数字0-9的集合,共有60k训练图像、10k测试图像、10个类别、图像大小28×28×1.
2022-07-08 08:37:15
4065
1
原创 深度学习 卷积神经网络(CNN)基础
1. CNN网络的构成2. 卷积层2.1 卷积的计算方法2.2 padding2.3 stride2.4 多通道卷积2.5 多卷积核卷积2.6 特征图大小3. 池化层(Pooling)3.1 最大池化3.2 平均池化4. 全连接层5.卷积神经网络的构建5.1 数据加载5.2 数据处理5.3 模型搭建5.4 模型编译5.5 模型训练5.6 模型评估......
2022-07-04 15:58:38
900
原创 深度学习 神经网络案例(手写数字识别)
使用手写数字的MNIST数据集如上图所示,该数据集包含60,000个用于训练的样本和10,000个用于测试的样本,图像是固定大小(28x28像素),其值为0到255。整个案例的实现流程是:首先要导入所需的工具包:1. 数据加载首先加载手写数字图像结果为:数据展示:效果如下所示:神经网络中的每个训练样本是一个向量,因此需要对输入进行重塑,使每个28x28的图像成为一个的784维向量。另外,将输入数据进行归一化处理,从0-255调整到0-1。输出为:另外对于目标值我们也需要进行处理,将其转换为热编
2022-07-03 16:22:02
6006
1
原创 深度学习 网络正则化
在设计机器学习算法时不仅要求在训练集上误差小,而且希望在新样本上的泛化能力强。许多机器学习算法都采用相关的策略来减小测试误差,这些策略被统称为正则化。因为神经网络的强大的表示能力经常遇到过拟合,所以需要使用不同形式的正则化策略。正则化通过对算法的修改来减少泛化误差,目前在深度学习中使用较多的策略有参数范数惩罚,提前终止,DropOut等,接下来我们对其进行详细的介绍。L1和L2是最常见的正则化方法。它们在损失函数(cost function)中增加一个正则项,由于添加了这个正则化项,权重矩阵的值减小,因为它
2022-07-03 15:50:59
2067
原创 深度学习 神经网络的优化方法
1. 梯度下降算法【回顾】2. 反向传播算法(BP算法)2.1 前向传播与反向传播2.2 链式法则2.3 反向传播算法3. 梯度下降优化方法3.1 动量算法(Momentum)3.2 AdaGrad3.3 RMSprop3.4 Adam4. 学习率退火4.1 分段常数衰减4.2 指数衰减4.3 1/t衰减总结...
2022-07-03 11:08:15
5679
原创 深度学习 常见的损失函数
在深度学习中, 损失函数是用来衡量模型参数的质量的函数, 衡量的方式是比较网络输出和真实输出的差异,损失函数在不同的文献中名称是不一样的,主要有以下几种命名方式:在深度学习的分类任务中使用最多的是交叉熵损失函数,所以在这里我们着重介绍这种损失函数。在多分类任务通常使用softmax将logits转换为概率的形式,所以多分类的交叉熵损失也叫做softmax损失,它的计算方法是:其中,y是样本x属于某一个类别的真实概率,而f(x)是样本属于某一类别的预测分数,S是softmax函数,L用来衡量p,q之间差异性的
2022-07-01 11:00:14
3859
原创 深度学习 神经网络基础
1. 深度学习简介2. 什么是神经网络3. 神经元是如何工作的?3.1 激活函数3.1.1 Sigmoid/logistics函数3.1.2 tanh(双曲正切曲线)3.1.3 RELU3.1.4 LeakReLu3.1.5 SoftMax3.1.6 其他激活函数3.1.7 如何选择激活函数3.2 参数初始化3.2.1 随机初始化3.2.2 标准初始化3.2.3 Xavier初始化3.2.4 He初始化4. 神经网络的搭建4.1 通过Sequential构建4.2 利用f
2022-07-01 09:32:37
1431
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人