自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(454)
  • 收藏
  • 关注

原创 最适合初学者的21个机器学习项目,附实战代码+数据集

大家好,平时大家看机器学习视频教程或者书籍时,是不是总有一种自己已经精通的感觉,但当你尝试去应用它时,可能会发现它比看起来更难。而「项目」可帮助你快速提高应用技巧,同时让你有机会探索有趣的主题。我会给大家介绍21个机器学习项目,包括面向新手的初级项目、面向专业人士的中级和高级项目。此外,你可以将项目添加到你的投资组合中,从而更轻松地找到工作,找到更多的职业机会,甚至协商更高的薪水。MNIST数字分类机器学习项目。使用机器学习的电影推荐系统。音乐流派分类机器学习项目。语音情感识别机器学习项目。

2022-10-26 18:09:29 109

原创 PyTorch怎么读?PyTorch怎正确发音

pytorch作为目前越来越受欢迎的深度学习框架,pytorch 基本上成了新人进入深度学习领域最常用的框架。最近老听到有人念错,我也是佛了。

2022-09-15 17:26:31 1610

原创 怎么搭建pytorch环境?pytorch环境搭建详细教程

首先需要进入 PyTorch官网,依次选择你电脑的配置(我这里已经下载了python3.7),这里提供使用pip和conda两种环境下安装的步骤截图。

2022-09-15 17:08:31 631

原创 对比学习范式是什么?代理任务和目标函数在对比学习中如何起作用?

对比学习的典型范式就是:代理任务+目标函数。代理任务和目标函数也是对比学习与有监督学习最大的区别(划重点!代理任务就是来解决这个问题的,我们用代理任务来定义对比学习的正负样本,无监督学习一旦有了输出y和真实的label,就需要有一个目标函数来计算两者的损失从而指导模型的学习方向。对于同一样本x,经过两个代理任务分别生成x~i和x~j两个样本,simCLR属于计算机视觉领域的paper,文中使用数据增强手段来作为代理任务,例如图片的随机裁剪、随机颜色失真、随机高斯模糊,x~i和x~j就称为一个正样本对。

2022-09-15 15:02:54 229

原创 对比学习是什么?一张图详解AI中的对比学习

对比学习有的paper中称之为自监督学习,有的paper称之为无监督学习,自监督学习是无监督学习的一种形式,现有的文献中没有正式的对两者进行区分定义,这两种称呼都可以用。对比学习的核心思想其实很简单,下面通过三张图说明核心思想。

2022-09-15 14:48:44 177

原创 PyTorch怎么入门?PyTorch保姆级入门教程!秒会!

pytorch官方教程,里面的内容相当丰富,我认为,值得大家好好学一学。这套PDF包含pytorch介绍、下载安装、60分钟快速入门。

2022-09-13 16:28:51 302

原创 怎么用PyTorch处理数据?PyTorch图像分类器

通常来说,当你处理图像,文本,语音或者视频数据时,你可以使用标准 python 包将数据加载成numpy 数组格式,然后将这个数组转换成 torch.*Tensor

2022-09-13 16:25:27 87

原创 什么是 autograd ?介绍 PyTorch 中的 autograd 包

autograd 包是 PyTorch 中所有神经网络的核心。首先让我们简要地介绍它,然后我们将会去训练我们的第一个神经网络。该 autograd 软件包为 Tensors 上的所有操作提供自动微分。

2022-09-13 16:20:32 174

原创 Anaconda在哪下载?Anaconda保姆级安装下载教程

许多人不知道Anaconda怎么下载。这里统一解答一下~!可以直接从 Anaconda官网下载,但因为Anaconda的服务器在国外,所以下载速度会很慢,这里推荐使用清华的镜像来下载。选择合适你的版本下载,我这里选择Anaconda3-5.1.0-

2022-09-13 16:15:23 868

原创 Anaconda怎么安装?Anaconda安装教程!

Anaconda是一个用于科学计算的Python发行版,支持Linux、Mac和Window系统,提供了包管理与环境管理的功能,可以很方便地解决Python并存、切换,以及各种第三方包安装的问题。

2022-09-13 16:10:41 63

原创 PyTorch是什么?PyTorch有什么用?

Torch是一个有大量机器学习算法支持的科学计算框架,是一个与Numpy类似的张量(Tensor)操作库,其特点是特别灵活,但因其采用了小众的编程语言是Lua,所以流行度不高,这也就有了PyTorch的出现。所以其实Torch是 PyTorch的前身,它们的底层语言相同,只是使用了不同的上层包装语言。TensorFlow和Caffe都是命令式的编程语言,而且是静态的,首先必须构建一个神经网络,然后一次又一次使用相同的结构,如果想要改 变网络的结构,就必须从头开始。* 灵活,支持动态神经网络。

2022-09-13 16:05:16 85

原创 什么是三维重建?三维重建有什么用?

在计算机视觉中, 三维重建是指根据单视图或者多视图的图像重建三维信息的过程. 由于单视图的信息不完全,因此三维重建需要利用经验知识. 而多视图的三维重建(类似人的双目定位)相对比较容易, 其方法是先对摄像机进行标定, 即计算出摄像机的图象坐标系与世界坐标系的关系.然后利用多个二维图象中的信息重建出三维信息。CPR可以观察管腔结构的腔壁病变(如斑块、狭窄等),也可以观察管状结构与周围结构的位置关系,但CPR所显示的不是正常的解剖结构和关系(它是把管状结构拉直了看),同时需要多个角度曲面重建以完整评价病变。

2022-09-06 18:26:48 842

原创 机器学习怎么学?机器学习流程

去噪就是去除数中干扰的数据,也就是说你的数据案例中存在特别情况的,或者是不正常的数据,一方面要求我们产品经理拿到的数据是反映真实世界的数据,一方面我们通过算法可以识别干扰的数据,比如对于数据有正态分布效果的我们可以通过3标准差去噪,因此去噪的目的就是去除掉数据中异常的数据。我们做回归分析,需要的必须是数值型的,因为回归是连续变量的分析,假如你要分析性别这个字段,那么必须把他的字段值定义成数值型的,例如0和1,这样才算是连续变量,才能做回归分析,假如要做分类,我们就可以把性别的字段设定成字符串,例如男和女。.

2022-08-10 19:55:52 405

原创 机器学习可以应用在哪些场景?机器学习有什么用?

我们从统计学角度在理解一下机器学习的这四大应用,如果我们有一批样本,希望能够预测是都属于某相关属性,如果样本值是离散的,我们就可以使用分类的方法,如果是连续的我们就可以使用回归的方法,如果我们这批样本没有对应的属性,而是想挖掘其中的相关性,那么就用聚类的方式。比如RFM模型中我们通过客户销售数据,通过这些数据对客户分群,然后通过聚类的方法,将相似度高的数据聚类到一起,通过分析出来的数据我们可以对数据特性在定义标签,它解决的是相似度的问题,将相似度高的聚集到一起。...

2022-08-10 19:52:38 2005

原创 机器学习中深度学习是什么?人工智能深度学习

包括一些人工智能基础入门视频+AI常用框架实战视频、图像识别、OpenCV、NLP、YOLO、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。深度学习归根结底也是机器学习,不过它不同于监督学习、半监督学习、无监督学习、强化学习的这种分类方法,它是另一种分类方法,基于算法神经网络的深度,可以分成浅层学习算法和深度学习算法。浅层学习算法主要是对一些结构化数据、半结构化数据一些场景的预测,深度学习主要解决复杂的场景,比如图像、文本、语音识别与分析等。.

2022-08-10 19:49:19 493

原创 机器学习中强化学习是什么?人工智能机器学习

由于智能体与环境的交互方式与人类与环境的交互方式类似,可以认为强化学习是一套通用的学习框架,可用来解决通用人工智能的问题。强化学习是一种比较复杂的机器学习方法,强调系统与外界不断的交互反馈,它主要是针对流程中不断需要推理的场景,比如无人汽车驾驶,它更多关注性能。由于智能体与环境的交互方式与生物跟环境的交互方式类似,因此可以认为强化学习是一套通用的学习框架,是通用人工智能算法的未来。学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。...

2022-08-10 19:46:54 1187

原创 机器学习中半监督学习是什么?人工智能机器学习

免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。半监督学习是监督学习和无监督学习相互结合的一种学习方法,通过半监督学习的方法可以实现分类、回归、聚类的结合使用。半监督回归:在无输出的输入的帮助下训练有输出的输入,获得比只用有输出的输入训练得到的回归器性能更好的回归;半监督聚类:在有类标签的样本的信息帮助下获得比只用无类标签的样例得到的结果更好的簇,提高聚类方法的精度;半监督分类:是在无类标签的样例的帮助下训练有类标签的样本,获得比只用有类标签的样本训练得到更优的分类;...

2022-08-10 19:33:50 480

原创 机器学习中无监督学习是什么?人工智能机器学习

机器学习需要通过建立模型进行自我学习,那么学习方法有哪些呢?本篇来给大家介绍一下机器学习中的无监督学习。如果还不了解什么是机器学习的,先浏览下这篇内容:

2022-08-10 19:31:19 162

原创 机器学习中监督学习是什么?人工智能机器学习

再举一个回归的例子,比如我们要预测公司净利润的数据,我们可以通过历史上公司利润(目标值),以及跟利润相关的指标,比如营业收入、资产负债情况、管理费用等数据,通过回归的方式我们回到的一个回归方程,建立公司利润与相关因此的方程式,通过输入因子数据,来预测公司利润。监督学习就是训练机器学习的模型的训练样本数据有对应的目标值,监督学习就是通过对数据样本因子和已知的结果建立联系,提取特征值和映射关系,通过已知的结果,已知数据样本不断的学习和训练,对新的数据进行结果的预测。本篇来给大家介绍一下机器学习中的监督学习。..

2022-08-10 19:24:30 1338

原创 机器学习是什么?详解机器学习概念

说到人工智能必然要了解机器学习,从信息化软件,到电子商务,然后到高速发展互联网时代,到至今的云计算、大数据等,渗透到我们的生活、工作之中,在互联网的驱动下,人们更清晰的认识和使用数据,不仅仅是数据统计、分析,我们还强调数据挖掘、预测。也就是说计算机利用以获取的数据得出某一模型,然后利用此模型进行预测的一种方法,这个过程跟人的学习过程有些类似,比如人获取一定的经验,可以对新问题进行预测。学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。......

2022-08-10 19:20:20 571

原创 机器学习中什么是集成学习?

例如玩一个猜谜游戏,如果你和两个朋友都知道正确的答案是A,那么你们三个人都会选A,而团队中其他三个不知道答案的人很可能会错误地猜测是B、C、D或E,其结果是A有三票,其他答案可能只有一到两票。但是,如果最终能将这些技术知识组合在一起,将会对更多领域有更准确的猜测,这是集成学习的原理,也就是结合不同个体模型(团队成员)的预测以提高准确性,并最大程度地减少错误。而简单的集成学习技术包括平均不同模型的输出结果,同时还开发了更复杂的方法和算法,专门用于将许多基础学习者/模型的预测结果组合在一起。...

2022-08-10 19:16:45 77

原创 什么是机器强化学习?原理是什么?

强化学习是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大,强化学习不同于连接主义学习中的监督学习,主要表现在教师信号上,强化学习中由环境提供的强化信号是对产生动作的好坏作一种评价(通常为标量信号),而不是告诉强化学习系统RLS(reinforcement learning system)如何去产生正确的动作。否则就给他(她)负反馈(教训或惩罚),激励小孩的潜能,强化他(她)自我学习能力,依靠自身的力量来主动学习和不断探索,最终让他(她)找到正确的方法或思路,以适应外部多变的环境。...

2022-08-10 19:13:05 315

原创 我的AI论文有救了系列!手把手教你写人工智能论文!

选错论题,做了多少准备工作都没用,在这种导师放养的大环境下,临答辩前几天论题被导师推翻重来的惨案实在太多了....如果你目前对自己的论文选题毫无想法,我这里收集了【100篇国内外经典AI论文案例】,视频带读,中英字幕,配套文献。从选题→看文献找创新点→行文→查重→交稿→答辩这个流程来看,90%同学都是卡在选题和创新点。最近我一个AI硕士碰表示,导师放养,不知道怎么解决论文问题?点击下方微信名片,长按或扫码加我可免费获取。我相信被这问题困扰的,不止一个。有需要的朋友,文末附免费下载方式。...

2022-08-06 19:32:43 463

原创 计算机视觉的就业如何?计算机视觉好找工作吗?

包括一些人工智能基础入门视频+AI常用框架实战视频、图像识别、OpenCV、NLP、YOLO、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。计算机视觉的研究方向非常广泛,包括网络攻防技术、网络与数据库技术的应用、数据仓库与数据挖 掘、多媒体与智能信息检索、数据网格与知识网格、计算机视觉与虚拟现实、模式识别与图像处理等。学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。...

2022-08-05 19:45:26 1786

原创 计算机视觉工程师收入高吗?月薪有多少?

他们给过来的需求里面,计算机视觉工程师都是加紧的Case,薪资方面,5-10年工作经验的人才能开到年薪50万以上,2-3年工资经验的人才月薪也是30000元起来,就连实习生,月薪都能开到8000-15000左右。包括一些人工智能基础入门视频+AI常用框架实战视频、图像识别、OpenCV、NLP、YOLO、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。人脸技术:检测、1:1认证、1:N识别、人脸属性、活体检测。3D技术:3D重建、视觉SLAM。.

2022-08-05 19:40:27 836

原创 学机器视觉好找工作吗?人工智能机器视觉方向怎么样?

这几年机器视觉的应用真的是风生水起。特别是在工业4.0,大数据,AI,深度学习这些高大上高科技名词的带动下,机器视觉越来越被企业老板接受。大的小的项目,旧的新的设备都在陆续应用上机器视觉。应用有多广泛也没具体的统计,以上也只是个人从业过程中经历所得。比如大家熟悉的PLC,十几年前市面上PLC学习资料很少,书店都买不到像样的。现在PLC相关的资料,纸质的,电子的,图文的,视频的,真的是满天飞。PLC已极度普及,想学习的人多,培训市场需求量巨大。同样机器视觉也将会是下一个PLC,当前正处在高速推广时期。可以先人

2022-08-05 19:34:58 590

原创 机器视觉需要学什么?学习机器视觉需要掌握哪些知识?

Halcon:编程和演示界面比较的友好,方便编程人员做二次开发,可生成C/C++文件,很容易嵌入到VC等编译环境下,对于有计算机基础或是有编程基础的同学,还是很容易就能够上手的。对于要学习机器视觉,会单纯的理论和编程是不够的,最好是以项目为基础,从立项开始,一步步完成自己设计的项目目标。学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。如果你是对机器视觉感兴趣或是想往这方面去发展,可以先选好一个适合自己的部分,结合实际,综合提高自己的水平。...

2022-08-05 19:32:15 1869

原创 人工智能机器视觉方向以后可以做什么?计算机视觉相关行业

对于许多工业应用,例如汽车或电子工业的零部件生产,热数据是至关重要的。这类系统的主要障碍是处理所需的数据量和速度,但更快的处理、更好的算法和相机校准的发展,仍使其成为2022年的热门话题。包括一些人工智能基础入门视频+AI常用框架实战视频、图像识别、OpenCV、NLP、YOLO、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。...

2022-08-05 19:27:20 246

原创 人工智能机器视觉方向是干嘛的?机器视觉特点

1、机器视觉是一项综合技术,其中包括数字图像处理技术,机械工程技术,控制技术,电光源 照明技术,光学成像技术,传感器技术,模拟与数字视频技术,计算机硬件技术,人机接口技术等。2、机器视觉更强调实用性,要求能够适应工业生产中恶劣的环境,要有合理的性价比,要有通用的工业接口,能够由普通工作来操作,有较高的容错能力和安全性,不会破坏工业产品,必须有较强的通用性和可移植性。学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。...

2022-08-05 19:24:48 267

原创 人工智能有哪些方向?什么方向有前景?

机器学习算法用于各种应用,例如电子邮件过滤和计算机视觉,在这些应用中,开发用于执行任务的特定指令的算法是不可行的。机器学习(ML)是计算机系统为了有效地执行特定任务,不使用明确的指令,而依赖模式和推理使用的算法和统计模型的科学研究。它被视为人工智能的一个子集。3、机器学习——机器学习(ML)是计算机系统为了有效地执行特定任务,不使用明确的指令,而依赖模式和推理使用的算法和统计模型的科学研究。学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。...

2022-08-05 19:19:42 1794

原创 自然语言处理怎么学?自然语言处理怎么最快入门?NLP快速入门-人工智能

理解开源项目的任务,编译通过该项目发布的示范程序,得到与项目示范程序一致的结果。如果输出的结果与项目中出现的结果不一致,就要仔细查验自己的程序,反复修改,直到结果与示范程序基本一致。在选题的时候,多注意选择蓝海的领域。在确认进入一个领域之后,按照建议一所述,需要找到本领域的开源项目或者工具,仔细研究一遍现有的主要流派和方法,先入门。学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。如果有,则去写一篇文章,否则,应该换一个新的选题。...

2022-08-02 20:25:05 121

原创 卷积神经网络怎么入门?入门卷积神经网络必备!人工智能-CNN入门

了解了这些基本概念,才能更好地了解后面的模型。光了解理论是不行的,要能够复现模型,能够利用复现的模型进行模型训练,测试,甚至能够应用到自己的科研或者工作中。想了解卷积神经网络模型,要先认真阅读对应的论文,了解模型提出的背景,模型相关的其他模型,了解模型的基本结构,了解模型的实验数据,了解模型的特点,分析模型的优缺点等等。了解完论文,就要根据论文内容,去分析模型的结构和原理,了解模型的结构,了解模型不同层的参数,通过结构去分析模型的特点,分析模型的优缺点,去和其他的模型进行比较。...

2022-08-02 20:19:27 225

原创 图神经网络怎么入门?一文带你了解图神经网络入门路径-GNN入门

不同于声学,图像,自然语言处理这些方向,深度学习可以很好的提取这些数据中的底层数据的复杂模式,对于现实世界而言,现实生活中普遍存在的关系具有非常复杂的结构,例如社交网络,电商网络,生物网络和交通网络。每个节点都有不同数量的相同节点,彼此之间存在依赖关系,导致一些在声学,图像上的重要操作(例如卷积)不再适合直接用于图。免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。...

2022-08-02 20:12:41 192

原创 Transformer怎么入门?如何学习Transformer?

免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。包括一些人工智能基础入门视频+AI常用框架实战视频、图像识别、OpenCV、NLQ、YOLO、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。理论学习部分首先要了解Attention机制,这里推荐李宏毅老师的机器学习(或者看他的PPT),讲的很清楚。...

2022-08-02 20:05:34 437

原创 Opencv怎么入门?如何从零开始学Opencv?人工智能入门-计算机视觉

最好的方法是带着问题去学,先从最简单的地方入手,比如调用OpenCV的GUI界面来调节一幅图像的灰度,再复杂些可以利用鼠标交互来实现PS的魔棒效果(分水岭算法)等等,这些网上都有很多现成的代码来学习,OpenCV中文论坛上也有不少大牛来回答问题。单纯的学习OpenCV的人不多,学习OpenCV只是为了更方便的编程,所以某种角度来看OpenCV只是把锋利的快刀,用刀本身不是目的,用刀切出有型的菜才是目的。最后免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。...

2022-08-02 19:53:20 595

原创 普通本科在人工智能和JAVA里选一个,怎么选?AI和java哪个好?

还要竞争业务能力,为人处事的能力,与产品,项目经理沟通的能力。你在Java这种研发类的班里学的好,等到公司里之后,你一定比那些社会中混的很油的人吃得开么?只不过,因为门槛比较高,更考验专业能力,不太容易出现太多“杂牌军”,也就更不容易出现,利用非专业能力弯道超你车的现象。选择的是人工智能,你在毕业以后如果你觉得你做不下去,你可以随时退下来转后端开发(具体转Go还是Java还是其他随你);学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。...

2022-08-02 19:45:23 351

原创 人工智能往哪个方向发展有前途?计算机视觉还是自然语言处理?

从近两年人工智能方向的就业情况来看,自然语言处理、计算机视觉都是比较热门的方向,但是相关岗位的数量并不算多,这一点应该引起研究生同学的注意。首先,掌握人工智能技术未来的发展方向还是比较多的,由于人工智能领域的细分研究方向比较多,所以具体的发展方向要结合自己的研究方向来进行选择。最后,人工智能领域的研发往往需要长时间的积累才能有所突破,所以在选择研发团队的时候,一定要重视该团队自身的资源积累情况。学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。.

2022-08-02 19:36:41 645

原创 深度学习怎么入门?零基础快速入门深度学习

首先对于数学来讲,我想很多搜索入门路线图的朋友,都会被推荐很多数学方面的大部头的书籍和视频和科目,比如说:微积分、线性代数、概率论、复变函数、数值计算等等;对于入门来说,我们不用学这么多,我们只需要学籍基础的神经网络,然后通过文本分类和图片分类任务去熟悉掌握整个徐娜林和预测流程,比如数据处理,模型搭建等呢吧;学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。我把深度学习的入门仿照机器学习,也分为两个部分,先学理论,再实战打比赛;...

2022-08-02 19:31:24 942

原创 计算机视觉怎么入门?初学者怎么学计算机视觉?

计算机视觉入门容易,但精进困难,想要拿到好的offer,还是要老老实实学CV看资料、看网课、做项目、最重要的是,潜下心去学!包括一些人工智能基础入门视频+AI常用框架实战视频、图像识别、OpenCV、NLQ、YOLO、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文等。看了几篇paper,发几篇水会,就自信满满的来面试了。学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。...

2022-07-31 20:58:15 450

原创 YOLO怎么入门?怎么实现自己的训练集?

目标检测是计算机视觉中比较简单的任务,用来在一张图篇中找到某些特定的物体,目标检测不仅要求我们识别这些物体的种类,同时要求我们标出这些物体的位置。很显然,整体上这三类任务从易到难,我们要讨论的目标检测位于中间。前面的分类任务是我们做目标检测的基础,至于像素级别的实例分割,太难了别想了。学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。上面的图片中,分别是计算机视觉的三类任务分类,目标检测,实例分割。显然,类别是离散数据,位置是连续数据。...

2022-07-31 20:54:08 95

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除