[BZOJ4565][Haoi2016]字符合并(状压dp)

245 篇文章 0 订阅
211 篇文章 0 订阅

题目描述

传送门

题解

i,j,k都比较小,可以考虑状压dp。
f[i][j][S] 表示将i~j这一段消到S这个状态能获得的最大得分。
只考虑两种转移:
①类似区间dp的方法,枚举端点mid,枚举i~mid的状态,mid+1~j的状态为0或1。注意这里每次消除只能是k的整数倍,所以mid+1~j只能是k的整数倍。
f[i][j][S<<1]=max(f[i][j][S<<1],f[i][m1][S]+f[m][j][0]) f[i][j][S<<1|1]=max(f[i][j][S<<1|1],f[i][m1][S]+f[m][j][1])
刚开始没有这样写,而是枚举整个区间的状态之后,用S>>1和S&1转移。不过这样的话有一个问题,就是消除区间的时候由于是二进制表示,001,01,和1都表示成了一个状态没法区分。
②将长度正好可以消除的S直接向c[S]转移。但是这里要注意一个问题,就是要用一个临时数组记录一下,就是刚转移完的状态不能紧接着转移下一个状态,这里也存在我上面说的那个状态表示的问题。转移方程: g[c[S]]=max(g[c[S]],f[i][j][S]+w[S]) f[i][j][0]=g[0],f[i][j][1]=g[1]
时间复杂度 O(n32k) ,但是实际上有效的转移不会很多。注意转移来的状态必须是合法的状态,可以刚开始把f数组赋成负无穷来区分。

代码

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define N 305
#define LL long long

char ch[N];
int n,k,s[N],c[1<<8];
LL w[1<<8],f[N][N][1<<8],inf,ans;
inline void up(LL &x,LL f0){x=max(x,f0);}
int main()
{
    scanf("%d%d\n",&n,&k);
    gets(ch);
    for (int i=0;i<n;++i) s[i+1]=ch[i]-'0';
    for (int i=0;i<(1<<k);++i) scanf("%d%lld",&c[i],&w[i]);

    memset(f,128,sizeof(f));inf=f[0][0][0];

    for (int i=1;i<=n;++i) f[i][i][s[i]]=0;
    for (int l=2;l<=n;++l)
        for (int i=1;i<=n-l+1;++i)
        {
            int j=i+l-1;
            int len=j-i; LL now,t;
            while (len>=k) len-=k-1;
            for (int m=j;m>i;m-=k-1)
                for (int S=0;S<(1<<len);++S)
                    if (f[i][m-1][S]!=inf)
                    {
                        if (f[m][j][0]!=inf) f[i][j][S<<1]=max(f[i][j][S<<1],f[i][m-1][S]+f[m][j][0]);
                        if (f[m][j][1]!=inf) f[i][j][S<<1|1]=max(f[i][j][S<<1|1],f[i][m-1][S]+f[m][j][1]);
                    }
            if (len==k-1)
            {
                LL g[2]; g[0]=g[1]=inf;
                for (int S=0;S<(1<<k);++S)
                    if (f[i][j][S]!=inf)
                        g[c[S]]=max(g[c[S]],f[i][j][S]+w[S]);
                f[i][j][0]=g[0]; f[i][j][1]=g[1];
            }
        }
    for (int i=0;i<(1<<k);++i)
        ans=max(ans,f[1][n][i]);
    printf("%lld\n",ans);
}

总结

①当数据范围比较小的时候考虑状压dp。
②状态的表示要考虑好。

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值