bzoj 3218: a + b Problem (可持久化线段树+最小割)

本文探讨了一个关于给定方格进行黑白染色的问题,旨在寻找所有染色方案中的最大好看度。通过构建最小割模型并引入权值线段树进行优化,最终实现了高效的求解。

题目描述

传送门

题目大意:从前有个 n 个方格排成一行,从左至右依此编号为 1,2,⋯,n
有一天思考熊想给这 n 个方格染上黑白两色。
第 i个方格上有 6个属性: ai,bi,wi,li,ri,pi
如果方格 i 染成黑色就会获得 bi 的好看度。
如果方格 i染成白色就会获得 wi 的好看度。
但是太多了黑色就不好看了。如果方格 i是黑色,并且存在一个 j使得 1j<i liajri 且方格 j 为白色,那么方格 i就被称为奇怪的方格。
如果方格 i 是奇怪的方格,就会使总好看度减少 pi
也就是说对于一个染色方案,好看度为:
ibi+iwiipi
现在给你 n,a,b,w,l,r,p问所有染色方案中最大的好看度是多少。

题解

先考虑最原始的建图。
这里写图片描述
两种建图在写的过程中都尝试了,但是B是错的。为什么呢?区别在于B图拆点了,有些限制实现不了。就是如果一个点x不能直接限制另一个点y,但是可以通过限制另一个点z,再由z限制y。对于这种传递关系B图是实现不了的所以是错的,想让B也是对的其实只需要一个小修改,把B图中橙色的边改成双向边即可。
这也提示我们在建立最小割模型的时候要小心。

关键是怎么优化建图,发现A图中多数的边来之蓝色的边,极限情况下蓝色边的个数可以达到 n(n1)2 .
发现如果我们按照点权,先不考虑 j<i ,那么每个点连出去的蓝边实际上是一段区间,如果我们这个东西转换成一棵权值线段树的话,那么每个点最多选中 logn 个区间,每个叶子节点连向每个点的代表节点,线段树中的边直接连接。相当于在图中加入了一棵线段树。还有一个限制是 j<i ,那么我们只需要把权值线段树改成可持久化线段树即可。
这里写图片描述
蓝色的边表示叶子节点连接每个点的代表节点,对于橙色的边,因为3,4属于权值线段树的同一个位置,所以对于所有流经4的也一定会流经3.

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define N 500003
#define inf 1000000000 
using namespace std;
int tot,point[N],v[N],nxt[N],remain[N],last[N],deep[N],cur[N],num[N];
int n,m,L[N],R[N],w[N],a[N],b[N],p[N];
int ls[N],rs[N],root[N],sz,c[N],cnt;
int add(int x,int y,int z)
{
    tot++; nxt[tot]=point[x]; point[x]=tot; v[tot]=y; remain[tot]=z;
    tot++; nxt[tot]=point[y]; point[y]=tot; v[tot]=x; remain[tot]=0;
    //cout<<x<<" "<<y<<" "<<z<<endl;
}
int addflow(int s,int t)
{
    int now=t; int ans=inf;
    while (now!=s) {
        ans=min(ans,remain[last[now]]);
        now=v[last[now]^1];
    }
    now=t;
    while (now!=s) {
        remain[last[now]]-=ans;
        remain[last[now]^1]+=ans;
        now=v[last[now]^1];
    }
    return ans;
}
void bfs(int s,int t)
{
    for (int i=1;i<=sz;i++) deep[i]=sz;
    deep[t]=0; 
    queue<int> p; p.push(t);
    while (!p.empty()){
        int now=p.front(); p.pop();
        for (int i=point[now];i!=-1;i=nxt[i])
         if (deep[v[i]]==sz&&remain[i^1])
          deep[v[i]]=deep[now]+1,p.push(v[i]);
    }
}
int isap(int s,int t)
{
    int now=s; bfs(s,t); int ans=0;
    for (int i=1;i<=sz;i++) cur[i]=point[i];
    for (int i=1;i<=sz;i++) num[deep[i]]++;
    while (deep[s]<sz) {
        if (now==t) {
            ans+=addflow(s,t);
            now=s;
        }
        bool pd=false;
        for (int i=point[now];i!=-1;i=nxt[i])
         if (deep[v[i]]+1==deep[now]&&remain[i]){
            cur[now]=i;
            pd=true; last[v[i]]=i;
            now=v[i]; break;
         }
        if (!pd) {
            int minn=sz+1;
            for (int i=point[now];i!=-1;i=nxt[i])
             if(remain[i]) minn=min(minn,deep[v[i]]);
            if (!--num[deep[now]]) break;
            num[deep[now]=minn+1]++;
            cur[now]=point[now];
            if (now!=s) now=v[last[now]^1];
        }
    }
    return ans;
}
void insert(int &i,int l,int r,int x,int id)
{
    ls[++sz]=ls[i]; rs[sz]=rs[i];
    if (l==r) {
        if (i) add(sz,i,inf);
        add(sz,id,inf);
        i=sz;
        return;
    }
    int mid=(l+r)/2;
    i=sz;
    if (x<=mid) insert(ls[i],l,mid,x,id);
    else insert(rs[i],mid+1,r,x,id);
}
void query(int i,int l,int r,int ll,int rr,int id)
{
    if (ll<=l&&r<=rr) {
        if (i) add(id,i,inf);
        return;
    }
    int mid=(l+r)/2;
    if (ll<=mid) query(ls[i],l,mid,ll,rr,id);
    if (rr>mid) query(rs[i],mid+1,r,ll,rr,id);
}
int main()
{
    freopen("a.in","r",stdin);
//  freopen("my.out","w",stdout);
    scanf("%d",&n); int sum=0; tot=-1;
    memset(point,-1,sizeof(point));
    for (int i=1;i<=n;i++){
      scanf("%d%d%d%d%d%d",&a[i],&b[i],&w[i],&L[i],&R[i],&p[i]);
      sum+=b[i]+w[i];
      c[++cnt]=a[i]; c[++cnt]=L[i]; c[++cnt]=R[i];
    }
    sort(c+1,c+cnt+1);
    cnt=unique(c+1,c+cnt+1)-c-1;
    int S=1; int T=2+2*n;
    for (int i=1;i<=n;i++){
     add(S,i+1,b[i]);
     add(i+1,i+n+1,p[i]);
     add(i+1,T,w[i]);
    }
    sz=T;
    for (int i=1;i<=n;i++) {
        a[i]=lower_bound(c+1,c+cnt+1,a[i])-c;
        L[i]=lower_bound(c+1,c+cnt+1,L[i])-c;
        R[i]=lower_bound(c+1,c+cnt+1,R[i])-c;
        query(root[i-1],1,cnt,L[i],R[i],i+n+1);
        root[i]=root[i-1]; insert(root[i],1,cnt,a[i],i+1);
    }
    for (int i=T+1;i<=sz;i++) {
        if (ls[i]) add(i,ls[i],inf);
        if (rs[i]) add(i,rs[i],inf);
    }
    printf("%d\n",sum-isap(S,T));
}
可持久化线段树是一种支持历史版本查询的数据结构,其核心思想是在每次修改操作时保留完整的旧版本信息。这使得它在某些应用场景中非常有用,例如版本控制系统或需要回溯操作的算法问题。 ### 空间复杂度分析 可持久化线段树的空间复杂度与普通线段树相比有所增加。普通线段树的空间复杂度为 $O(n)$,其中 $n$ 是数据规模。而可持久化线段树由于需要保留历史版本,每次更新操作都会生成新的节点,因此其空间复杂度为 $O(n \log n)$。具体来说,每次更新操作最多会生成 $O(\log n)$ 个新节点,因为线段树的高度为 $O(\log n)$,每个节点最多分裂一次[^1]。 ### 实现原理 可持久化线段树的核心实现原理是**节点复用**和**路径复制**。当对线段树进行更新时,只有从根节点到目标节点的路径上的节点会被复制,其余节点保持不变。这种方式避免了对整个线段树的完全复制,从而节省了内存[^1]。 具体实现中,每个版本的线段树通过一个根节点指针来标识。当进行更新操作时,新版本的根节点指向一个新的节点,而未修改的子树则继续指向旧版本的节点。这种设计使得不同版本之间可以共享未修改的部分,从而减少内存开销。 以下是一个简单的可持久化线段树的实现示例,用于单点更新和区间查询: ```cpp #include <iostream> #include <vector> using namespace std; struct Node { int val; // 节点值,例如区间和 Node* left; Node* right; Node(int v) : val(v), left(nullptr), right(nullptr) {} }; class PersistentSegmentTree { private: vector<int> data; Node* build(Node* node, int l, int r) { if (l == r) { node->val = data[l]; return node; } int mid = (l + r) / 2; node->left = new Node(0); node->right = new Node(0); build(node->left, l, mid); build(node->right, mid + 1, r); node->val = node->left->val + node->right->val; return node; } Node* update(Node* node, int l, int r, int idx, int value) { if (l == r) { Node* new_node = new Node(value); return new_node; } int mid = (l + r) / 2; Node* new_node = new Node(0); if (idx <= mid) { new_node->left = update(node->left, l, mid, idx, value); new_node->right = node->right; } else { new_node->left = node->left; new_node->right = update(node->right, mid + 1, r, idx, value); } new_node->val = new_node->left->val + new_node->right->val; return new_node; } int query(Node* node, int l, int r, int ql, int qr) { if (qr < l || ql > r) return 0; if (ql <= l && r <= qr) return node->val; int mid = (l + r) / 2; return query(node->left, l, mid, ql, qr) + query(node->right, mid + 1, r, ql, qr); } public: vector<Node*> roots; // 存储每个版本的根节点 PersistentSegmentTree(vector<int>& arr) { data = arr; roots.push_back(new Node(0)); build(roots[0], 0, data.size() - 1); } void update(int version, int idx, int value) { Node* new_root = update(roots[version], 0, data.size() - 1, idx, value); roots.push_back(new_root); } int query(int version, int ql, int qr) { return query(roots[version], 0, data.size() - 1, ql, qr); } }; ``` ### 内存占用分析 可持久化线段树的内存占用主要由以下几个部分构成: 1. **节点存储**:每个节点需要存储值、左右子节点指针。通常每个节点的大小为常数级别(例如包含一个整数值和两个指针)。 2. **版本管理**:每个版本通过一个根节点指针进行管理,根节点指针的存储开销为 $O(1)$。 3. **路径复制**:每次更新操作会生成新的节点,这些新节点的总数为 $O(\log n)$,因此总内存占用为 $O(n \log n)$。 在实际应用中,内存占用还可能受到编程语言的内存管理机制影响。例如,在 C++ 中手动管理内存可能导致较高的内存碎片,而在 Java 或 Python 等具有垃圾回收机制的语言中,内存占用可能相对较低,但具体表现取决于实现细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值