题目描述
传送门
题解
将所有的机器按照d从小到大排序。
f[i]
表示买入第i台机器后的最大收益,则
f[i]=max{f[j]+(d[i]−d[j]−1)∗g[j]+r[j]}−p[i]
,其中
j<i
。
我们将式子写开,得到
f[i]=f[j]+d[i]∗g[j]−d[j]∗g[j]−g[j]+r[j]−p[i]
移项,得到
f[j]−d[j]∗g[j]−g[j]+r[j]=f[i]−p[i]−d[i]∗g[j]
那么
f[i]−p[i]
可以看成是经过点
(g[j],f[j]−d[j]∗g[j]−g[j]+r[j])
的斜率为
−d[i]
的直线的最大截距.
我们对下标进行CDQ分治,将[l,mid]得到的点维护成一个斜率单减的凸壳,[mid+1,r]中的直线按照斜率递减的顺序依次进行匹配,计算答案即可。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define N 100033
#define eps 1e-9
#define LL long long
using namespace std;
const double inf=1e19;
int n,C,D,top,st[N];
LL f[N];
struct data{
LL d,r,p,g,id;
double k;
}a[N],np[N];
struct point{
LL x,y; bool pd;
bool operator <(const point &b) const {
return x<b.x||(x==b.x&&y>b.y);
}
}p[N],np1[N];
int cmp(data a,data b)
{
return a.d<b.d;
}
double getk(int i,int j)
{
if (p[i].x-p[j].x==0) return -inf;
return (double)(p[i].y-p[j].y)*1.0/(double)(p[i].x-p[j].x)*1.0;
}
void divide(int l,int r)
{
if (l==r) {
f[l]=max(C-a[l].p,f[l]); p[l].pd=0;
if (f[l]<0) f[l]=-1,p[l].pd=1;
p[l].x=a[l].g;
p[l].y=f[l]-a[l].d*a[l].g-a[l].g+a[l].r;
return;
}
int mid=(l+r)/2;
int l1=l; int l2=mid+1;
for (int i=l;i<=r;i++)
if (a[i].id<=mid) np[l1++]=a[i];
else np[l2++]=a[i];
for (int i=l;i<=r;i++) a[i]=np[i];
divide(l,mid);
int top=0;
for (int i=l;i<=mid;i++) {
if (p[i].pd) continue;
while (top>=2&&getk(i,st[top])+eps>getk(st[top],st[top-1])) top--;
st[++top]=i;
}
if (top) {
int j=1;
for (int i=mid+1;i<=r;i++) {
while (j<top&&getk(st[j],st[j+1])>-a[i].d)
j++;
int k=st[j];
f[a[i].id]=max(f[a[i].id],p[k].y+p[k].x*a[i].d-a[i].p);
}
}
divide(mid+1,r);
l1=l; l2=mid+1;
for (int i=l;i<=r;i++)
if ((p[l1]<p[l2]||l2>r)&&l1<=mid) np1[i]=p[l1++];
else np1[i]=p[l2++];
for (int i=l;i<=r;i++)
p[i]=np1[i];
}
int main()
{
freopen("a.in","r",stdin);
freopen("my.out","w",stdout);
int T=0;
while (true) {
scanf("%d%d%d",&n,&C,&D); T++;
if (n==0&&C==0&&D==0) break;
for (int i=1;i<=n;i++) scanf("%I64d%I64d%I64d%I64d",&a[i].d,&a[i].p,&a[i].r,&a[i].g);
++n; a[n].d=D+1; a[n].p=0; a[n].r=0; a[n].g=0;
for (int i=1;i<=n;i++) f[i]=-1;
sort(a+1,a+n+1,cmp);
for (int i=1;i<=n;i++) a[i].id=i;
divide(1,n);
printf("Case %d: %lld\n",T,f[n]);
}
}