关闭

hdu4565 So Easy!(矩阵快速幂)

标签: hdu
1292人阅读 评论(1) 收藏 举报
分类:
题意:
告诉你a,b,n,m,求

0<a,m<2^15 , (a-1)^2<b<a^2 , 0<b,n<2^31
解题思路:
    我们首先对(a+sqrt(b))^n进行处理,a+sqrt(b))^n的展开式我们可以知道
(a+sqrt(b))^n = Xn + Yn * sqrt(b);
那么
( a + sqrt( b ) )^( n + 1 ) = ( a + sqrt( b ) ) * ( Xn + Yn * sqrt(b) ) = ( a * Xn + b * Yn ) + ( a * Yn + Xn ) * sqrt( b );
Xn+1 = ( a * Xn + b * Yn )
Yn+1 = ( a * Yn + Xn )
将其转化为矩阵,则

递推下去可以得到

所以
Xn = a * X0 + b * Y0;
Yn = X0 + a * Y0;

由于 (a-1)^2<b<a^2 ,
那么 0 < ( a - sqrt( b ) )^ n < 1
 又  ( a + sqrt( b ) )^ n + ( a - sqrt( b ) )^ n = 2 * Xn
那么 ( a + sqrt( b ) )^ n 向上取整的值就是 2 * Xn
最终
    Sn = ( 2 * Xn )% m;

参考代码:
#include <iostream>
#include <math.h>
#include <stdio.h>
using namespace std;
typedef long long ll;
struct Matrix{
	ll mat[2][2];
};
Matrix mul(Matrix a,Matrix b,ll mod){
	Matrix ans;
	for (int i=0;i<2;i++){
		for (int j=0;j<2;j++){
			ans.mat[i][j]=0;
			for (int k=0;k<2;k++){
				ans.mat[i][j]=(ans.mat[i][j]+a.mat[i][k]*b.mat[k][j]);
				ans.mat[i][j]%=mod;
			}
		}
	}
	return ans;
}
Matrix Init(){
	Matrix ans;
	for (int i=0;i<2;i++){
		for (int j=0;j<2;j++){
			if (i==j)
				ans.mat[i][j]=1;
			else
				ans.mat[i][j]=0;
		}
	}
	return ans;
}
Matrix exp(Matrix a,ll k,ll m){
	Matrix ans=Init();
	while (k){
		if (k&1)
			ans=mul(ans,a,m);
		a=mul(a,a,m);
		k>>=1;
	}
	return ans;
}
int main(){
	Matrix M;
	ll a,b,n;
	ll m;
	while (~scanf("%lld%lld%lld%lld",&a,&b,&n,&m)){
		M.mat[0][0]=M.mat[1][1]=a;
		M.mat[0][1]=b;
		M.mat[1][0]=1;
		Matrix ans=exp(M,n,m);
		/*
		for (int i=0;i<2;i++){
			for (int j=0;j<2;j++)
				cout<<ans.mat[i][j]<<" ";
			cout<<endl;
		}
		*/
		ll x=ans.mat[0][0];

		cout<<(2*x)%m<<endl;
	}
	return 0;
}

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:128731次
    • 积分:2841
    • 等级:
    • 排名:第13790名
    • 原创:157篇
    • 转载:0篇
    • 译文:0篇
    • 评论:28条
    最新评论