棋盘覆盖问题

原创 2007年09月18日 23:09:00
// ChessBoard.cpp : implementation file
//题目:棋盘覆盖问题
//作者:任嫱
//日期:2007.9.25
 
//****************************************************
//问题描述:在一个2k×2k 个方格组成的棋盘中,恰有一个方格
//与其它方格不同,称该方格为一特殊方格,且称该棋盘为一特殊
//棋盘。在棋盘覆盖问题中,要用4种不同形态的L型骨牌覆盖给定
//的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不
//得重叠覆盖。
//****************************************************
 
//****************************************************
/*算法思想:
用分治策略,可以设计出解棋盘覆盖问题的简洁算法。 
(1)当k>0时,将2的k次幂乘以2的k次幂棋盘分割为4个2的k-1次幂乘以2的k-1次幂子棋盘。 
(2)特殊方格必位于4个较小棋盘之一中,其余3个子棋盘中无特殊方格。
(3)为了将这3个无特殊方格的子棋盘转化为特殊棋盘,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,这3个子棋盘上被L型骨牌覆盖的方格就成为该棋盘上的特殊方格,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种分割,直至棋盘简化为1*1棋盘。 
*/
//****************************************************

程序代码:

//tr:棋盘左上角方格的行号
//tc:棋盘左上角方格的列号
//dr:特殊方格所在的行号
//dc:特殊方格所在的列号
//size是棋盘的规模

#include "conio.h"
#include "math.h"
#include "iostream"
using namespace std;

/*X代表行坐标,Y代表列坐标*/
#define MAX 8
static int Board[MAX][MAX];
int tile=0;

//棋盘覆盖问题
void ChessBoard(int tr,int tc,int dr,int dc,int size)
{
 if(size==1) return;
 int t=tile++;       //L型骨牌号
 int s=size/2;  //分隔棋盘

//覆盖左上角子棋盘
 if(dr<tr+s&&dc<tc+s)
  ChessBoard(tr,tc,dr,dc,s);
 else
 {
  Board[tr+s-1][tc+s-1]=t;
  ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
 }

//覆盖右上角子棋盘

 if(dr<tr+s&&dc>=tc+s)
  ChessBoard(tr,tc+s,dr,dc,s);
 else
 {
  Board[tr+s-1][tc+s]=t;
  ChessBoard(tr,tc+s,tr+s-1,tc+s,s);
 }

//覆盖左下角子棋盘
 if(dr>=tr+s&&dc<tc+s)
  ChessBoard(tr+s,tc,dr,dc,s);
 else
 {
  Board[tr+s][tc+s-1]=t;
  ChessBoard(tr+s,tc,tr+s,tc+s-1,s);
 }

//覆盖右下角子棋盘
 if(dr>=tr+s&&dc>=tc+s)
  ChessBoard(tr+s,tc+s,dr,dc,s);
 else
 {
  Board[tr+s][tc+s]=t;
  ChessBoard(tr+s,tc+s,tr+s,tc+s,s);
 }
}


void print_chess(int size)
{
    int i,j;
 for(i=0;i!=MAX;i++)
 {
   for(j=0;j!=MAX;j++)
   printf("%5d",Board[i][j]);
   cout<<endl;
   cout<<endl;
}
}
 
int main( int argc, char *argv[] )
{
 
    cout<<"==*conquerorren*=="<<endl;
    cout<<"conquerorren.51.com"<<endl;
    ChessBoard(0, 0, 1, 2, MAX);
    print_chess(16);
    return 0;
}

   
   


 
 

算法设计与分析——棋盘覆盖问题

在一个2^k * 2^k个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。该棋盘为特殊棋盘,蓝色的方格为特殊方格。棋盘覆盖问题是指,要用图2中的4种不同形态...
  • sunshine__0411
  • sunshine__0411
  • 2017年11月01日 14:34
  • 341

棋盘覆盖问题 C++实现11

本算法,简单概述就是利用L型的骨牌,填充2^k*2^k的方形棋盘。其中棋盘用2维数组表示,这里用vector board表示。 我发现关于本算法,百度百科的说明和《算法设计与分析》这本书是一样的,错的...
  • kenden23
  • kenden23
  • 2013年10月22日 12:27
  • 2003

棋盘覆盖问题(分治)(C语言)

(棋盘覆盖问题)在一个2k × 2k 个方格组成的棋盘中恰有一个方格与其他方格不同(图中标记为-1 的方格),称之为特殊方格。现用L 型(占3 个小格)纸片覆盖棋盘上除特殊方格的所有部分,各纸片不得重...
  • wxf1995
  • wxf1995
  • 2009年10月11日 22:27
  • 3742

分治法——棋盘覆盖问题

分治法——棋盘覆盖问题 棋盘覆盖问题。有一个2k∗2k2^k*2^k的方格棋盘,恰有一个方格是黑色的,其他为白色。你的任务是用包含3个方格的L型牌覆盖所有白色方格。黑色方格不能被覆盖,且任意一个白...
  • q547550831
  • q547550831
  • 2016年05月30日 21:59
  • 4732

经典算法之棋盘覆盖问题 --分治法

一:算法分析 棋盘覆盖问题要求在2^k * 2^k 个方格组成的棋盘中,你给定任意一个特殊点,用一种方案实现对除该特殊点的棋盘实现全覆盖。 建立模型如图: 解决方案就是利用分治法,将方形棋盘分成4部...
  • FreeeLinux
  • FreeeLinux
  • 2016年09月29日 11:44
  • 8644

棋盘覆盖(nyoj 45)

题目链接:
  • u013207805
  • u013207805
  • 2014年04月08日 15:47
  • 494

棋盘覆盖问题 分治法

#include #include using namespace std; int Board[105][105]; static int tile=1; void ChessBoard(in...
  • xunfengdumo
  • xunfengdumo
  • 2017年04月04日 19:49
  • 331

C++棋盘覆盖问题源代码以及运行结果

C++棋盘覆盖问题 #include #include //包含设置域宽的头文件 #include     //标准库 using namespace std; int tile = 0; int...
  • abc582915847
  • abc582915847
  • 2014年03月16日 19:37
  • 1468

java实现的棋盘覆盖

算法设计与分析 第二版
  • u012270113
  • u012270113
  • 2014年04月25日 09:58
  • 2429

分治算法之 棋盘覆盖问题(完整代码实现)

我在这里是用了一个简化的方式,只是代码简化,还是分治递归思想。一分为4,直至2*2时可直接解决。 四种骨牌的摆放刚好对应:dir[4][2] = { { 0, 0 }, { 0, 1 }, { 1, ...
  • gaotong2055
  • gaotong2055
  • 2013年03月23日 20:04
  • 2561
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:棋盘覆盖问题
举报原因:
原因补充:

(最多只允许输入30个字)