棋盘覆盖问题

原创 2007年09月18日 23:09:00
// ChessBoard.cpp : implementation file
//题目:棋盘覆盖问题
//作者:任嫱
//日期:2007.9.25
 
//****************************************************
//问题描述:在一个2k×2k 个方格组成的棋盘中,恰有一个方格
//与其它方格不同,称该方格为一特殊方格,且称该棋盘为一特殊
//棋盘。在棋盘覆盖问题中,要用4种不同形态的L型骨牌覆盖给定
//的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不
//得重叠覆盖。
//****************************************************
 
//****************************************************
/*算法思想:
用分治策略,可以设计出解棋盘覆盖问题的简洁算法。 
(1)当k>0时,将2的k次幂乘以2的k次幂棋盘分割为4个2的k-1次幂乘以2的k-1次幂子棋盘。 
(2)特殊方格必位于4个较小棋盘之一中,其余3个子棋盘中无特殊方格。
(3)为了将这3个无特殊方格的子棋盘转化为特殊棋盘,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,这3个子棋盘上被L型骨牌覆盖的方格就成为该棋盘上的特殊方格,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种分割,直至棋盘简化为1*1棋盘。 
*/
//****************************************************

程序代码:

//tr:棋盘左上角方格的行号
//tc:棋盘左上角方格的列号
//dr:特殊方格所在的行号
//dc:特殊方格所在的列号
//size是棋盘的规模

#include "conio.h"
#include "math.h"
#include "iostream"
using namespace std;

/*X代表行坐标,Y代表列坐标*/
#define MAX 8
static int Board[MAX][MAX];
int tile=0;

//棋盘覆盖问题
void ChessBoard(int tr,int tc,int dr,int dc,int size)
{
 if(size==1) return;
 int t=tile++;       //L型骨牌号
 int s=size/2;  //分隔棋盘

//覆盖左上角子棋盘
 if(dr<tr+s&&dc<tc+s)
  ChessBoard(tr,tc,dr,dc,s);
 else
 {
  Board[tr+s-1][tc+s-1]=t;
  ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
 }

//覆盖右上角子棋盘

 if(dr<tr+s&&dc>=tc+s)
  ChessBoard(tr,tc+s,dr,dc,s);
 else
 {
  Board[tr+s-1][tc+s]=t;
  ChessBoard(tr,tc+s,tr+s-1,tc+s,s);
 }

//覆盖左下角子棋盘
 if(dr>=tr+s&&dc<tc+s)
  ChessBoard(tr+s,tc,dr,dc,s);
 else
 {
  Board[tr+s][tc+s-1]=t;
  ChessBoard(tr+s,tc,tr+s,tc+s-1,s);
 }

//覆盖右下角子棋盘
 if(dr>=tr+s&&dc>=tc+s)
  ChessBoard(tr+s,tc+s,dr,dc,s);
 else
 {
  Board[tr+s][tc+s]=t;
  ChessBoard(tr+s,tc+s,tr+s,tc+s,s);
 }
}


void print_chess(int size)
{
    int i,j;
 for(i=0;i!=MAX;i++)
 {
   for(j=0;j!=MAX;j++)
   printf("%5d",Board[i][j]);
   cout<<endl;
   cout<<endl;
}
}
 
int main( int argc, char *argv[] )
{
 
    cout<<"==*conquerorren*=="<<endl;
    cout<<"conquerorren.51.com"<<endl;
    ChessBoard(0, 0, 1, 2, MAX);
    print_chess(16);
    return 0;
}

   
   


 
 

相关文章推荐

棋盘覆盖问题

  • 2013年11月16日 17:28
  • 1KB
  • 下载

棋盘覆盖问题

  • 2014年07月18日 15:06
  • 271KB
  • 下载

经典算法之棋盘覆盖问题 --分治法

一:算法分析 棋盘覆盖问题要求在2^k * 2^k 个方格组成的棋盘中,你给定任意一个特殊点,用一种方案实现对除该特殊点的棋盘实现全覆盖。 建立模型如图: 解决方案就是利用分治法,将方形棋盘分成4部...

棋盘覆盖问题

  • 2015年03月12日 11:40
  • 2.52MB
  • 下载

棋盘覆盖问题 操作系统

  • 2011年07月06日 00:13
  • 3KB
  • 下载

计算机算法设计与分析之棋盘覆盖问题

在一个由2^k *2^k个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘 为一特殊棋盘。现有四种L型骨牌如下图所示,要用这四种骨牌覆盖棋盘上除特殊方格之外的其他所有格子...
  • hqh45
  • hqh45
  • 2014年10月24日 22:16
  • 1373

棋盘覆盖问题的实现

  • 2012年11月10日 20:18
  • 76KB
  • 下载

棋盘覆盖问题 (分治法)

棋盘覆盖问题 问题的描述: ¢在一个 2k×2k个方格组成的棋盘中,若恰有一个方格与其他方格不同,称该方格为特殊方格,且称该棋盘为特殊棋盘(Defective Chessboard)。 ...
  • fofu33
  • fofu33
  • 2013年04月25日 21:59
  • 1678

棋盘覆盖问题C++

  • 2011年12月31日 15:22
  • 2KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:棋盘覆盖问题
举报原因:
原因补充:

(最多只允许输入30个字)