关闭

棋盘覆盖问题

514人阅读 评论(0) 收藏 举报
// ChessBoard.cpp : implementation file
//题目:棋盘覆盖问题
//作者:任嫱
//日期:2007.9.25
 
//****************************************************
//问题描述:在一个2k×2k 个方格组成的棋盘中,恰有一个方格
//与其它方格不同,称该方格为一特殊方格,且称该棋盘为一特殊
//棋盘。在棋盘覆盖问题中,要用4种不同形态的L型骨牌覆盖给定
//的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不
//得重叠覆盖。
//****************************************************
 
//****************************************************
/*算法思想:
用分治策略,可以设计出解棋盘覆盖问题的简洁算法。 
(1)当k>0时,将2的k次幂乘以2的k次幂棋盘分割为4个2的k-1次幂乘以2的k-1次幂子棋盘。 
(2)特殊方格必位于4个较小棋盘之一中,其余3个子棋盘中无特殊方格。
(3)为了将这3个无特殊方格的子棋盘转化为特殊棋盘,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,这3个子棋盘上被L型骨牌覆盖的方格就成为该棋盘上的特殊方格,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种分割,直至棋盘简化为1*1棋盘。 
*/
//****************************************************

程序代码:

//tr:棋盘左上角方格的行号
//tc:棋盘左上角方格的列号
//dr:特殊方格所在的行号
//dc:特殊方格所在的列号
//size是棋盘的规模

#include "conio.h"
#include "math.h"
#include "iostream"
using namespace std;

/*X代表行坐标,Y代表列坐标*/
#define MAX 8
static int Board[MAX][MAX];
int tile=0;

//棋盘覆盖问题
void ChessBoard(int tr,int tc,int dr,int dc,int size)
{
 if(size==1) return;
 int t=tile++;       //L型骨牌号
 int s=size/2;  //分隔棋盘

//覆盖左上角子棋盘
 if(dr<tr+s&&dc<tc+s)
  ChessBoard(tr,tc,dr,dc,s);
 else
 {
  Board[tr+s-1][tc+s-1]=t;
  ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
 }

//覆盖右上角子棋盘

 if(dr<tr+s&&dc>=tc+s)
  ChessBoard(tr,tc+s,dr,dc,s);
 else
 {
  Board[tr+s-1][tc+s]=t;
  ChessBoard(tr,tc+s,tr+s-1,tc+s,s);
 }

//覆盖左下角子棋盘
 if(dr>=tr+s&&dc<tc+s)
  ChessBoard(tr+s,tc,dr,dc,s);
 else
 {
  Board[tr+s][tc+s-1]=t;
  ChessBoard(tr+s,tc,tr+s,tc+s-1,s);
 }

//覆盖右下角子棋盘
 if(dr>=tr+s&&dc>=tc+s)
  ChessBoard(tr+s,tc+s,dr,dc,s);
 else
 {
  Board[tr+s][tc+s]=t;
  ChessBoard(tr+s,tc+s,tr+s,tc+s,s);
 }
}


void print_chess(int size)
{
    int i,j;
 for(i=0;i!=MAX;i++)
 {
   for(j=0;j!=MAX;j++)
   printf("%5d",Board[i][j]);
   cout<<endl;
   cout<<endl;
}
}
 
int main( int argc, char *argv[] )
{
 
    cout<<"==*conquerorren*=="<<endl;
    cout<<"conquerorren.51.com"<<endl;
    ChessBoard(0, 0, 1, 2, MAX);
    print_chess(16);
    return 0;
}

   
   


 
 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:56492次
    • 积分:1079
    • 等级:
    • 排名:千里之外
    • 原创:46篇
    • 转载:18篇
    • 译文:2篇
    • 评论:17条
    最新评论
    个人网站