非议MFC(二)逻辑上的不完备

原创 2003年02月18日 08:49:00

                          非议MFC(二)逻辑上的不完备

关键字:C++,MFC,RECT,CRect,POINT,CPoint,逻辑

说明:程序片断仅包括理解所必需的代码,其余省略。

1.设计缺失
file://in <WINDEF.H>
typedef struct tagRECT
{
      LONG left;
      LONG top;
      LONG right;
      LONG bottom;
} RECT, *PRECT, NEAR *NPRECT, FAR *LPRECT;
file://in <AFXWIN.H>
class CRect : public tagRECT
{
      void SwapLeftRight();                  file://[1]

      BOOL IsRectEmpty() const;
      BOOL IsRectNull() const;
      void SetRectEmpty();                  file://[2]

      CRect(int l, int t, int r, int b);
      CRect(POINT topLeft, POINT bottomRight);
      CRect(POINT point, SIZE size);            file://[3]
      void SetRect(int x1, int y1, int x2, int y2);
      void SetRect(POINT topLeft, POINT bottomRight);
};
[1]为什么有SwapLeftRight(),却不提供对应的SwapTopBottom()?
[2]同理,为什么不提供SetRectNull()呢?
[3]既然三种方法都可以构造CRect对象,期望SetRect(POINT point, SIZE size)不是很合理吗?
补上这些缺失的函数不过是举手之劳,“不因善小而不为”这句话不应该只挂在嘴上!

2.前后不一致
file://in <AFXWIN.H>
class CPoint : public tagPOINT
{
      CRect operator+(const RECT* lpRect) const;      file://[1]
};
typedef const RECT* LPCRECT;
class CRect : public tagRECT
{
      CRect operator+(LPCRECT lpRect) const;            file://[2]

      void operator+=(LPCRECT lpRect);            file://[3]
      void operator&=(const RECT& rect);            file://[4]
};
由于LPCRECT的类型定义放在中间,[1][2]的形参采取了形式不同但意义相同的声明方式。
[3][4]是相似的运算符重载,却使用了不同的形参传递方式。
每个人可以有自己的代码风格,但在同一个文件中,或者至少在同一个类中,总应该使用统一的风格吧!

3.妨碍语法完整性
file://in <AFXWIN.H>
class CRect : public tagRECT
{
      void operator=(const RECT& srcRect);
};
众所周知,在C和C++中,任何一个表达式的本身都是有值的,例如:a=100就是一个表达式,它的值是100。有了这个逻辑前提,链式表达式才能合理存在。在b=a=100;中,准确地说,是把a=100这个表达式的值100赋值给b。
而CRect类中,赋值运算符的返回类型被错误地设定成void,于是CRect对象之间的赋值表达式没有了值,链式表达式也失效了。
这个运算符的正确返回类型应该是CRect &。
难道MFC的开发人员不看《Effective C++》?

4.数学运算的对称破缺
file://in <WINDEF.H>
typedef struct tagPOINT
{
    LONG x;
    LONG y;
} POINT, *PPOINT, NEAR *NPPOINT, FAR *LPPOINT;
file://in <AFXWIN.H>
class CPoint : public tagPOINT
{
      CPoint operator+(POINT point) const;
};
给出如下测试代码:
POINT pt;
CPoint pnt;
CPoint result;
result=pnt+pnt;            file://ok
result=pt+pt;            file://error
result=pnt+pt;            file://ok
result=pt+pnt;            file://error
pnt+pnt自然没问题,pt+pt报错也勉强可以理解,但是pnt+pt可以,pt+pnt偏偏就不行。直觉上,加法应该满足交换率,但是MFC“一鸣惊人”地打破了我们的思维惯性。
实际上,如果把运算符函数声明为:
      friend const CPoint operator+(const POINT & pntL,const POINT & pntR);
前述的四个语句就都可以通过了。
也许有人会说:“friend关键字是非面向对象的,最好不要使用。”那么,我要说:首先,C++不是Java,它的主要设计原则是满足大型系统的效率、弹性和可维护性,面向对象中好的方法要采纳,非面向对象中好的方法也要采纳。其次,MFC在其他地方就使用了friend。
如果认为pnt和pt之间不允许相加,那也应该把运算符函数声明为更安全的形式:
      const CPoint operator+(const CPoint & pntR) const;
这样就只允许pnt和pnt相加了。
要行都行,要不行都不行,不要歧视!


请参考下一篇《非议MFC(三)库代码的质量问题》

哥德尔不完备性定理——从数学危机到哲学危机

一、哥德尔不完备性定理的基本内容    一个普遍公认的事实是,哥德尔不完备性定理在数理逻辑中占有极其重要的地位,是数学与逻辑发展史中的一个里程碑。    哥德尔关于形式系统的不完备性定理,首次发表...
  • tiankonguse
  • tiankonguse
  • 2014年02月20日 14:50
  • 1149

公理系统的相容性、独立性和完备性

几何公理体系的三个基本问题任何公理体系,包括初等几何公理体系,都有三个基本总题:1)无矛盾性问题(即相容问题):2)最少个数问题(即独立性问题);3)完备性问题;第一个问题要求公理体系的各个公理以及经...
  • jnucstan
  • jnucstan
  • 2007年10月02日 16:56
  • 5161

完备性的定义(ZZ)

完备性在数学及其相关领域中,一个对象具有完备性,即它不需要添加任何其他元素,这个对象也可称为完备的或完全的。简介   完备性也称完全性,可以从多个不同的角度来精确描述这个定义,同时可以引入完备化这个...
  • xiaoguiyuan
  • xiaoguiyuan
  • 2010年11月22日 20:13
  • 3845

哥德尔不完备定理----一切都是非真即假的吗

如果有一个人说:“我在说谎” 那么,他说的话是谎言吗? 如果是假的,那么他说的反而是真的,如果是真的,那么他说的反而是假的了。 如果这话是匹诺曹说的,恐怕他的鼻子就得变成永动机了。 匹诺曹:“...
  • qq_36403266
  • qq_36403266
  • 2017年01月30日 09:30
  • 266

PGM:不完备数据的参数估计

http://blog.csdn.net/pipisorry/article/details/52626889使用不完备数据的贝叶斯学习:MLE估计(梯度上升和EM算法)、贝叶斯估计。参数估计与处理完...
  • pipisorry
  • pipisorry
  • 2016年09月22日 20:24
  • 1368

路径规划算法的完备性与概率完备性、最优性与渐进最优性

路径规划算法的目的是要规划出一条从起始点到目标点的无碰撞可行路径。常见的路径规划算法大致可以分为以A*算法为代表的基于搜索的规划算法、以RRT为代表的基于采样的规划算法和以遗传算法为代表的基于启发式的...
  • songyunli1111
  • songyunli1111
  • 2017年10月29日 11:41
  • 315

命题逻辑的soundness可靠性和completeness完备性

转载于http://blog.csdn.net/on_1y/article/details/8727346 命题逻辑中的语法与语义,可靠性与完备性1 导言 初学数理逻辑的时候,一个非常重要的点就...
  • qq_32679835
  • qq_32679835
  • 2017年11月08日 23:14
  • 163

非议MFC

非议MFC(一)宏和类型定义的困惑                          非议MFC(一)宏和类型定义的困惑关键字:C++,MFC,宏,macro,define,typedef有感于MFC...
  • huntjap
  • huntjap
  • 2005年01月05日 11:31
  • 1259

Godel第一不完备性定理与强人工智能

Godel第一不完备性定理:任何一个内部一致的形式体系,若包含了基本算术公理体系,则该体系不是完备的。亦即,存在一个命题,这个命题是真的,但不可证明。Godel定理涉及到一些基本术语。先简介如下。理论...
  • whl0070179
  • whl0070179
  • 2007年11月30日 19:33
  • 1735

数字逻辑中的最小完全集

逻辑门这里只研究单输入单输出、二输入单输出的逻辑门。 单输入的逻辑门是非门(恒等的情况不考虑),真值表为 A B 0 1 1 0 逻辑门的类型,参见下表 A B C...
  • u013795675
  • u013795675
  • 2015年03月20日 02:05
  • 1930
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:非议MFC(二)逻辑上的不完备
举报原因:
原因补充:

(最多只允许输入30个字)