Quake-III原代码里的神奇的浮点sqrt()函数

 最令人惊讶的是平方根函数sqrt()。课本里说的,基本上是牛顿跌代法,通过若干步的叠代,结果越来越接近真实结果。
  但q_math.c里面却给出了这样奇异的平方根函数:(我的注释)
float Q_rsqrt( float number )
{
  long i;
  float x2, y;
  const float threehalfs = 1.5F;
  x2 = number * 0.5F;
  y  = number;
  i  = * ( long * ) &y;         // 浮点数按BIT强行赋给长整形
  i  = 0x5f3759df - ( i >> 1 ); // 没天理!!!!!
  y  = * ( float * ) &i;
  y  = y * ( threehalfs - ( x2 * y * y ) ); // 第1次叠代
  // y  = y * ( threehalfs - ( x2 * y * y ) ); // 第2次叠代,可以删除
  #ifndef Q3_VM
  #ifdef __linux__
    assert( !isnan(y) ); // bk010122 - FPE?
  #endif
  #endif
  return y;
}
   函数返回1/sqrt(x),这个函数在图像处理中比sqrt(x)更有用。
   注意到这个函数只用了一次叠代!(其实就是根本没用叠代,直接运算)。编译,实验,这个函数不仅工作的很好,而且比标准的sqrt()函数快4倍!要知道,编译器自带的函数,可是经过严格仔细的汇编优化的啊!
 
  这个简洁的函数,最核心,也是最让人费解的,就是标注了“没天理”那句:(原代码的注释是 what the fu*ck ?)
     i  = 0x5f3759df - ( i >> 1 ); // 没天理!!!!!

再加上y  = y * ( threehalfs - ( x2 * y * y ) );
两句话就完成了开方运算!而且注意到,核心那句是定点移位运算,速度极快!特别在很多没有乘法指令的RISC结构CPU上,这样做是极其高效的。

  最让人感兴趣的,是那个常数0x5f3759df。我的猜测是这样的:牛顿叠代法用1/2作为初始点进行N步叠代得到精确结果。这里计算一个最佳猜测值i,然后,以i为起始点,只需要做1步叠代,就可以得到相当精确的结果。如果做2次叠代,就更为精确了(屏蔽掉那句)。


   搜索包含关键字“0x5f3759df”的文章,找到普渡大学数学系的Chris Lomont的一篇论文,专门对这个函数研究,尝试用严格的方法推导出这个常数(他还提到有人认为这个函数是在NVidia工作过的Gary Tarolli写的)。Chris推出的常数是0x5f37642f),和Q_rsqrt里的稍有不同,而且实际表现也稍有不如。卡马克到底怎么推出这个常数的就是谜了。


最后,给出最精简的1/sqrt()函数:
float InvSqrt(float x)
{
  float xhalf = 0.5f*x;
  int i = *(int*)&x; // get bits for floating value
  i = 0x5f375a86- (i>>1); // gives initial guess y0
  x = *(float*)&i; // convert bits back to float
  x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
  return x;

快速平方根算法
作者:Blackbird文章出处:友善之臂旅店

在3D图形编程中,经常要求平方根或平方根的倒数,例如:求向量的长度或将向量归一化。C数学函数库中的sqrt具有理想的精度,但对于3D游戏程式来说速度太慢。我们希望能够在保证足够的精度的同时,进一步提高速度。

Carmack在QUAKE3中使用了下面的算法,它第一次在公众场合出现的时候,几乎震住了所有的人。据说该算法其实并不是Carmack发明的,它真正的作者是Nvidia的Gary Tarolli(未经证实)。

计算参数x的平方根的倒数//float InvSqrt (float x){ float xhalf = 0.5f*x; int i = *(int*)&x; i = 0x5f3759df - (i >> 1); // 计算第一个近似根 x = *(float*)&i; x = x*(1.5f - xhalf*x*x); // 牛顿迭代法 return x;}
该算法的本质其实就是牛顿迭代法(Newton-Raphson Method,简称NR),而NR的基础则是泰勒级数(Taylor Series)。NR是一种求方程的近似根的方法。首先要估计一个与方程的根比较*近的数值,然后根据公式推算下一个更加近似的数值,不断重复直到可以获得满意的精度。其公式如下:

函数:y=f(x)其一阶导数为:y'=f'(x)则方程:f(x)=0 的第n+1个近似根为x[n+1] = x[n] - f(x[n]) / f'(x[n])
NR最关键的地方在于估计第一个近似根。如果该近似根与真根足够*近的话,那么只需要少数几次迭代,就可以得到满意的解。

现在回过头来看看如何利用牛顿法来解决我们的问题。求平方根的倒数,实际就是求方程1/(x^2)-a=0的解。将该方程按牛顿迭代法的公式展开为:

x[n+1]=1/2*x[n]*(3-a*x[n]*x[n])
将1/2放到括号里面,就得到了上面那个函数的倒数第二行。


接着,我们要设法估计第一个近似根。这也是上面的函数最神奇的地方。它通过某种方法算出了一个与真根非常接近的近似根,因此它只需要使用一次迭代过程就获得了较满意的解。它是怎样做到的呢?所有的奥妙就在于这一行:

i = 0x5f3759df - (i >> 1); // 计算第一个近似根
超级莫名其妙的语句,不是吗?但仔细想一下的话,还是可以理解的。我们知道,IEEE标准下,float类型的数据在32位系统上是这样表示的(大体来说就是这样,但省略了很多细节,有兴趣可以GOOGLE):

bits:31 30 ... 031:符号位30-23:共8位,保存指数(E)22-0:共23位,保存尾数(M)
所以,32位的浮点数用十进制实数表示就是:M*2^E。开根然后倒数就是:M^(-1/2)*2^(-E/2)。现在就十分清晰了。语句i>>1其工作就是将指数除以2,实现2^(E/2)的部分。而前面用一个常数减去它,目的就是得到M^(1/2)同时反转所有指数的符号。

至于那个0x5f3759df,呃,我只能说,的确是一个超级的Magic Number。

那个Magic Number是可以推导出来的,但我并不打算在这里讨论,因为实在太繁琐了。简单来说,其原理如下:因为IEEE的浮点数中,尾数M省略了最前面的1,所以实际的尾数是1+M。如果你在大学上数学课没有打瞌睡的话,那么当你看到(1+M)^(-1/2)这样的形式时,应该会马上联想的到它的泰勒级数展开,而该展开式的第一项就是常数。下面给出简单的推导过程:

对于实数R>0,假设其在IEEE的浮点表示中,指数为E,尾数为M,则:R^(-1/2)= (1+M)^(-1/2) * 2^(-E/2)将(1+M)^(-1/2)按泰勒级数展开,取第一项,得:原式= (1-M/2) * 2^(-E/2)= 2^(-E/2) - (M/2) * 2^(-E/2)如果不考虑指数的符号的话,(M/2)*2^(E/2)正是(R>>1),而在IEEE表示中,指数的符号只需简单地加上一个偏移即可,而式子的前半部分刚好是个常数,所以原式可以转化为:原式 = C - (M/2)*2^(E/2) = C - (R>>1),其中C为常数所以只需要解方程:R^(-1/2)= (1+M)^(-1/2) * 2^(-E/2)= C - (R>>1)求出令到相对误差最小的C值就可以了
上面的推导过程只是我个人的理解,并未得到证实。而Chris Lomont则在他的论文中详细讨论了最后那个方程的解法,并尝试在实际的机器上寻找最佳的常数C。有兴趣的朋友可以在文末找到他的论文的链接。

所以,所谓的Magic Number,并不是从N元宇宙的某个星系由于时空扭曲而掉到地球上的,而是几百年前就有的数学理论。只要熟悉NR和泰勒级数,你我同样有能力作出类似的优化。

在GameDev.net上有人做过测试,该函数的相对误差约为0.177585%,速度比C标准库的sqrt提高超过20%。如果增加一次迭代过程,相对误差可以降低到e-004的级数,但速度也会降到和sqrt差不多。据说在DOOM3中,Carmack通过查找表进一步优化了该算法,精度近乎完美,而且速度也比原版提高了一截(正在努力弄源码,谁有发我一份)。

值得注意的是,在Chris Lomont的演算中,理论上最优秀的常数(精度最高)是0x5f37642f,并且在实际测试中,如果只使用一次迭代的话,其效果也是最好的。但奇怪的是,经过两次NR后,在该常数下解的精度将降低得非常厉害(天知道是怎么回事!)。经过实际的测试,Chris Lomont认为,最优秀的常数是0x5f375a86。如果换成64位的double版本的话,算法还是一样的,而最优常数则为0x5fe6ec85e7de30da(又一个令人冒汗的Magic Number - -b)。

这个算法依赖于浮点数的内部表示和字节顺序,所以是不具移植性的。如果放到Mac上跑就会挂掉。如果想具备可移植性,还是乖乖用sqrt好了。但算法思想是通用的。大家可以尝试推算一下相应的平方根算法。

下面给出Carmack在QUAKE3中使用的平方根算法。Carmack已经将QUAKE3的所有源代码捐给开源了,所以大家可以放心使用,不用担心会收到律师信。

Carmack在QUAKE3中使用的计算平方根的函数//float CarmSqrt(float x){ union{  int intPart;  float floatPart; } convertor; union{  int intPart;  float floatPart; } convertor2; convertor.floatPart = x; convertor2.floatPart = x; convertor.intPart = 0x1FBCF800 + (convertor.intPart >> 1); convertor2.intPart = 0x5f3759df - (convertor2.intPart >> 1); return 0.5f*(convertor.floatPart + (x * convertor2.floatPart));}
另一个基于同样算法的更高速度的sqrt实现如下。其只是简单地将指数除以2,并没有考虑尾数的方根。要看懂该代码的话必须知道,在IEEE浮点数的格式中,E是由实际的指数加127得到的。例如,如果实数是0.1234*2^10,在浮点表示中,E(第23-30位)的值其实为10+127=137。所以下面的代码中,要处理127偏移,这就是常数0x3f800000的作用。我没实际测试过该函数,所以对其优劣无从评论,但估计其精度应该会降低很多。

float Faster_Sqrtf(float f){ float result; _asm {  mov eax, f  sub eax, 0x3f800000  sar eax, 1  add eax, 0x3f800000  mov result, eax } return result;}
除了基于NR的方法外,其他常见的快速算法还有多项式逼近。下面的函数取自《3D游戏编程大师技巧》,它使用一个多项式来近似替代原来的长度方程,但我搞不清楚作者使用的公式是怎么推导出来的(如果你知道的话请告诉我,谢谢)。

  这个函数计算从(0,0)到(x,y)的距离,相对误差为3.5%//int FastDistance2D(int x, int y){ x = abs(x); y = abs(y); int mn = MIN(x,y); return(x+y-(mn>>1)-(mn>>2)+(mn>>4));} 该函数计算(0,0,0)到(x,y,z)的距离,相对误差为8%//float FastDistance3D(float fx, float fy, float fz){ int temp; int x,y,z; // 确保所有的值为正 x = int(fabs(fx) * 1024); y = int(fabs(fy) * 1024); z = int(fabs(fz) * 1024); // 排序 if (y < x) SWAP(x,y,temp) if (z < y) SWAP(y,z,temp) if (y < x) SWAP(x,y,temp) int dist = (z + 11 * (y >> 5) + (x >> 2) ); return((float)(dist >> 10));}
还有一种方法称为Distance Estimates(距离评估?),

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值