uva 12295 Optimal Symmetric Paths__DP

You have a grid of n rows and n columns. Each of the unit squares contains a non-zero digit. Youwalk from the top-left square to the bottom-right square. Each step, you can move left, right, up ordown to the adjacent square (you cannot move diagonally), but you cannot visit a square more thanonce. There is another interesting rule: your path must be symmetric about the line connecting thebottom-left square and top-right square. Below is a symmetric path in a6 x 6 grid.

Your task is to find out, among all valid paths, how many of them have the minimal sum of digits?

Input

There will be at most 25 test cases. Each test case begins with an integer n (2n100). Each of thenext n lines contains n non-zero digits (i.e. one of 1, 2, 3, ..., 9). These n2 integers are the digits in thegrid. The input is terminated by a test case withn = 0, you should not process it.

Output

For each test case, print the number of optimal symmetric paths, modulo 1,000,000,009.

Sample Input

2
1 1
1 1
3
1 1 1
1 1 1
2 1 1
0


Sample Output

2
3


#include<stdio.h>

#define N 101
#define MAX 1000000009
/*

*/
int dp[N][N],n,pat[N][N];
int solve()
{
int i,j,k,f;
for(i=0;i<n;++i)
pat[i][i]=1;
for(k=1;k<n;++k)
for(i=k,j=0;i<n;++i,++j)
{
f=dp[i][j+1]-dp[i-1][j];
dp[i][j]+=dp[j][i];
if(f>0)
{
pat[i][j]=pat[i-1][j];
dp[i][j]+=dp[i-1][j];
}
else if(f<0)
{
pat[i][j]=pat[i][j+1];
dp[i][j]+=dp[i][j+1];
}
else
{
pat[i][j]=(pat[i][j+1]+pat[i-1][j])%MAX;
dp[i][j]+=dp[i][j+1];
}
}
return pat[n-1][0];
}
int main()
{
while(scanf("%d",&n)==1&&n)
{
int i,j;
for(i=n-1;i>=0;--i)
for(j=0;j<n;++j)
scanf("%d",&dp[i][j]);
printf("%d\n",solve());
}
return 0;
}


• 本文已收录于以下专栏：

举报原因： 您举报文章：uva 12295 Optimal Symmetric Paths__DP 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)