SuPhoebe
码龄9年
  • 2,755,672
    被访问
  • 483
    原创
  • 1,136,251
    排名
  • 2,095
    粉丝
  • 20
    铁粉
关注
提问 私信

个人简介:不是我针对谁,我是说在座的诸位都比我强

  • 加入CSDN时间: 2013-11-30
博客简介:

Mr.Phoebe的专栏

博客描述:
退役后还是一个弱渣
查看详细资料
个人成就
  • 获得1,519次点赞
  • 内容获得426次评论
  • 获得6,239次收藏
创作历程
  • 6篇
    2021年
  • 10篇
    2020年
  • 10篇
    2019年
  • 64篇
    2018年
  • 70篇
    2017年
  • 62篇
    2016年
  • 240篇
    2015年
  • 126篇
    2014年
成就勋章
TA的专栏
  • 机器学习与数学模型
    68篇
  • 计算机科学与技术专业知识笔记
    42篇
  • QT学习
    25篇
  • Java & Scala
    36篇
  • 高级数据库
    25篇
  • 数学 & 博弈论 & FFT & 位运算
    73篇
  • 动态规划 & 贪心
    67篇
  • 数据结构 & hash
    72篇
  • 图论 & 网络流
    43篇
  • 模拟 & 匹配
    45篇
  • 搜索
    30篇
  • 前缀 & 后缀
    29篇
  • 计算几何
    5篇
  • 二分 & 三分
    14篇
  • 分治 & 树分治 & 树链剖分
    14篇
  • QT开发
    29篇
  • Java开发
    18篇
  • Python & Django开发
    24篇
  • Scala & Spark
    22篇
  • Go语言
    9篇
  • 数据库
    33篇
  • 计算机学科学习笔记
    88篇
  • 数学建模
    31篇
  • 机器学习 & 深度学习
    44篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

设计数据密集型应用 第六章:分区

6. 分区我们必须跳出电脑指令序列的窠臼。 叙述定义、描述元数据、梳理关系,而不是编写过程。—— Grace Murray Hopper,未来的计算机及其管理(1962)文章目录6. 分区术语澄清分区与复制键值数据的分区根据键的范围分区根据键的散列分区一致性哈希负载倾斜与消除热点分片与次级索引基于文档的二级索引进行分区基于关键词(Term)的二级索引进行分区分区再平衡平衡策略反面教材:hash mod N固定数量的分区动态分区按节点比例分区运维:手动还是自动平衡请求路由执行并行查询本章小结参考
翻译
发布博客 2021.11.22 ·
136 阅读 ·
0 点赞 ·
0 评论

设计数据密集型应用 第五章:复制

设计数据密集型应用 第五章:复制与可能出错的东西比,'不可能’出错的东西最显著的特点就是:一旦真的出错,通常就彻底玩完了。——道格拉斯·亚当斯(1992)文章目录设计数据密集型应用 第五章:复制领导者与追随者同步复制与异步复制关于复制的研究设置新从库处理节点宕机从库失效:追赶恢复主库失效:故障切换复制日志的实现基于语句的复制传输预写式日志(WAL)逻辑日志复制(基于行)基于触发器的复制复制延迟问题读己之写单调读一致前缀读复制延迟的解决方案多主复制多主复制的应用场景运维多个数据中心需要离线操作的
翻译
发布博客 2021.07.19 ·
250 阅读 ·
0 点赞 ·
0 评论

设计数据密集型应用 第四章:编码与演化

设计数据密集型应用 第四章:编码与演化唯变所适——以弗所的赫拉克利特,为柏拉图所引(公元前360年)文章目录设计数据密集型应用 第四章:编码与演化编码数据的格式术语冲突语言特定的格式JSON,XML和二进制变体二进制编码Thrift与Protocol Buffers字段标签和模式演变数据类型和模式演变Avro作者模式与读者模式模式演变规则但作者模式到底是什么?动态生成的模式代码生成和动态类型的语言模式的优点数据流的类型数据库中的数据流在不同的时间写入不同的值归档存储服务中的数据流:REST与R
翻译
发布博客 2021.07.11 ·
270 阅读 ·
0 点赞 ·
0 评论

设计数据密集型应用 第三章:存储与检索

3. 第三章:存储与检索建立秩序,省却搜索——德国谚语文章目录3. 第三章:存储与检索驱动数据库的数据结构哈希索引SSTables和LSM树构建和维护SSTables用SSTables制作LSM树性能优化B树让B树更可靠B树优化比较B树和LSM树LSM树的优点LSM树的缺点其他索引结构将值存储在索引中多列索引全文搜索和模糊索引在内存中存储一切事务处理还是分析?数据仓库OLTP数据库和数据仓库之间的分歧星型和雪花型:分析的模式列存储列压缩面向列的存储和列族内存带宽和向量处理列存储中的排序顺序几个
翻译
发布博客 2021.06.27 ·
251 阅读 ·
0 点赞 ·
0 评论

设计数据密集型应用 第二章:数据模型与查询语言

2. 数据模型与查询语言语言的边界就是思想的边界。—— 路德维奇·维特根斯坦,《逻辑哲学》(1922)文章目录2. 数据模型与查询语言关系模型与文档模型NoSQL的诞生对象关系不匹配多对一和多对多的关系文档数据库是否在重蹈覆辙?网络模型关系模型与文档数据库相比关系型数据库与文档数据库在今日的对比哪种数据模型更有助于简化应用代码?文档模型中的架构灵活性查询的数据局部性文档和关系数据库的融合数据查询语言Web上的声明式查询MapReduce查询图数据模型属性图Cypher查询语言SQL中的图查询三
翻译
发布博客 2021.06.27 ·
228 阅读 ·
0 点赞 ·
0 评论

设计数据密集型应用 第一章:可靠性,可伸缩性,可维护性

第一章:可靠性,可伸缩性,可维护性原文地址互联网做得太棒了,以至于大多数人将它看作像太平洋这样的自然资源,而不是什么人工产物。上一次出现这种大规模且无差错的技术, 你还记得是什么时候吗?——阿兰·凯在接受Dobb博士杂志采访时说(2012年)文章目录第一章:可靠性,可伸缩性,可维护性关于数据系统的思考可靠性硬件故障软件错误人为错误可靠性有多重要?可伸缩性描述负载描述性能延迟和响应时间实践中的百分位点应对负载的方法可维护性可操作性:人生苦短,关爱运维简单性:管理复杂度可演化性:拥抱变化本章小结
翻译
发布博客 2021.06.27 ·
220 阅读 ·
1 点赞 ·
0 评论

计算机视觉中的深度学习11: 神经网络的训练2

Slides:百度云 提取码: gs3n接着第10讲继续总览单次设置激活函数数据预处理权重初始化正则化动态训练学习率规划large-batch 训练;超参数优化训练后模型融合迁移学习今天将介绍第二点和第三点。学习率规划我们有多种梯度下降的方式:SGD, SGD+Momentum, Adagrad, RMSProp, Adam对于这些梯度下降的方式,学习率都是一个超参数。我们要怎么选取一个合适的学习率呢?对于任何的方式,初始情况下,我们都应该选择较大
原创
发布博客 2020.12.06 ·
457 阅读 ·
0 点赞 ·
0 评论

计算机视觉中的深度学习10: 神经网络的训练1

Slides:百度云 提取码: gs3n第9课讲的是神经网络的软硬件,感觉比较科普,不做总结。总览单次设置激活函数数据预处理权重初始化正则化动态训练学习率规划large-batch 训练;超参数优化训练后模型融合迁移学习今天第一讲讲解的是第一点,第二讲将介绍第二点和第三点。激活函数之前也介绍了激活函数是什么,不同的激活函数在训练上,在效果上,在解决问题的方面都各有侧重。下面一一来介绍。Sigmoid非常常用的激活函数,在很多线性分类的machi
原创
发布博客 2020.09.20 ·
678 阅读 ·
0 点赞 ·
0 评论

计算机视觉中的深度学习8: 卷积神经网络的结构

Slides:百度云 提取码: gs3n今天这一讲,我们以ImageNet Classification Challenge中使用的CNN的发展来进行介绍。AlexNet在2012年以前,ImageNet Classification Challenge的获胜者都是人工进行特征提取的线性分类模型。在2012年,AlexNet成功登顶。AlexNet的结构蓝色部分是神经网络的结构,从这我们能够看得出来,这个神经网络的各项长宽大小都是没有明显规律的。这花费了研究人员很长时间进行调整。黄色的部分
原创
发布博客 2020.09.11 ·
418 阅读 ·
0 点赞 ·
0 评论

计算机视觉中的深度学习7: 卷积神经网络

Slides:百度云 提取码: gs3n之前说了全连接神经网络,说了线性分类,这些东西全都没有保留图片原本的2D特性,全都是将图片转化为1D的数组。而今天说的CNN,则是能更好地保留图片的2D特性,在CV中有着更广泛地运用。卷积层对于一个32x32x3的一个图片,全连接层将它平摊成一个3072x1的数组对于同样的图片,卷积层则是这么做的它通过一个和输入图片同样高的filter,让filter与输入图片进行卷积,得出了一个28x28x1的新的图片同时,我们可以有多个filter,从而产生多个
原创
发布博客 2020.08.27 ·
323 阅读 ·
1 点赞 ·
0 评论

计算机视觉中的深度学习6: 反向传播

Slides:百度云 提取码: gs3n神经网络的梯度下降我们之前在学习线性分类器的时候,使用Loss函数以及梯度下降法来更新权重。那么对于神经网络,我们该如何计算每层神经元的权重呢?对每层W直接求导(愚蠢的方法)如上公式所示,Loss函数最终是能被表达成由各层W组成的函数公式,并且也完全有可能直接对其进行求导。问题非常乏味,需要大量矩阵演算,需要大量纸张如果我们想改变损失怎么办? 例如。 使用softmax代替SVM? 需要从头开始重新派生。这种方式不是模块化的。对于非常复杂的NN模型
原创
发布博客 2020.08.24 ·
240 阅读 ·
0 点赞 ·
0 评论

计算机视觉中的深度学习5: 神经网络

Slides:百度云 提取码: gs3n前情回顾我们讲解了用线性模型进行图片分类用Loss函数来表示不同的权重的好坏用SGD来训练模型,使得Loss函数最小新的挑战线性分类并不能解决一切问题比如,下图的非线性分类问题再比如,对于每个类别,都需要一个模板来表示,从而它不能识别一个类中其他状态的图片。特征转化用如图的方式进行极坐标和直角坐标的转化,从而使得右图是线性可分的图片特征:颜色直方图将图片进行统计学意义上的特征提取图片特征:边缘梯度直方图用到了经典CV边缘判断,计
原创
发布博客 2020.08.23 ·
649 阅读 ·
0 点赞 ·
0 评论

计算机视觉中的深度学习4: 优化

优化优化的本质目标就是ω∗=argminωL(ω)\omega^*=argmin_{\omega}L(\omega)ω∗=argminω​L(ω)其中的L(ω)L(\omega)L(ω)是Lost函数,即,找到能够使得L(ω)L(\omega)L(ω)最小的ω\omegaω。优化的方式随机搜索(愚蠢的决定)梯度计算对于一维函数,通过微分得到梯度df(x)dx=lim⁡h→0f(x+h)−f(x)h{df(x)\over dx}=\lim_{h\rightarrow 0}{f(x+h)-f(
原创
发布博客 2020.08.20 ·
229 阅读 ·
0 点赞 ·
0 评论

计算机视觉中的深度学习3: 线性分类

Slides:百度云 提取码: gs3n线性分类的参数线性分类的公式f(x,W)=Wx+bf(x, W) = Wx + bf(x,W)=Wx+b其中WWW为参数或者权重以一个有101010类的32×32×332\times 32\times 332×32×3的图片为例其中f(x,W)f(x, W)f(x,W)和bbb为(10,)(10,)(10,)向量,WWW为(10,3072)(10, 3072)(10,3072)的矩阵,xxx为(3072,)(3072,)(3072,)的向量。也可以把b
原创
发布博客 2020.08.17 ·
205 阅读 ·
0 点赞 ·
0 评论

计算机视觉中的深度学习2: 图片分类

计算机视觉中的深度学习2: 图片分类Slides:百度云计算机与人眼的区别对于一张灰度图片,计算机能看到的是像素大小的0~255的灰度值;对于RGB图片,则是一张像素大小的3通道矩阵,即800x600x3。计算机视觉的挑战视角变化的挑战视角的变化带来的像素的变化是非常巨大的。在不同的角度拍摄一只猫,人类很容易分辨这是同一种猫,而像素的变化却非常巨大,只有设计出了更加完备的算法才能让计算机程序更稳定地运行。图片交叉的挑战多只猫会重叠在一起。粒度更细的分类我们不仅仅需要分辨
原创
发布博客 2020.08.14 ·
609 阅读 ·
0 点赞 ·
0 评论

Leetcode 851. Loud and Rich 以及一些面试的想法

Leetcode 851. Loud and Rich 以及一些面试的想法Leetcode 851. Loud and Rich 这道题本身没有什么很特殊的地方,但是它引发了我对面试写算法题的一些想法和思考。题意:给你一个拓扑序列richer,给你一个安静值quiet。对于每一个节点,找到拓扑序列严格在这个节点之后的最小的quiet值的节点。(无法排列拓扑关系的,则不是严格在节点之后的)。思路看到题目第一眼,首先想到排一个拓扑序列,再对于每个节点,取拓扑序列后一段的最小值(和最小值代表的节点)。
原创
发布博客 2020.07.13 ·
196 阅读 ·
0 点赞 ·
0 评论

异步调用future/promise模式(C++版本)

Future/Promise 编程模式如何减少服务器应答时间,如何更强地进行并发。异步调用的Future/Promise1模式就是实现这一目的的手段之一。一个 Future 就是说“将来”你需要某些东西(一般就是一个网络请求的结果),但是你现在就要发起这样的请求,并且这个请求会异步执行。或者换一个说法,你需要在后台执行一个异步请求。C++中的应用C++11创建了线程以后,我们不能直接从th...
原创
发布博客 2019.07.29 ·
1491 阅读 ·
0 点赞 ·
0 评论

未定义行为与求值顺序

未定义行为若违反某些规则,则令整个程序失去意义。定义在计算机程序设计中,未定义行为(undefined behavior)是指执行某种计算机代码所产生的结果,这种代码在当前程序状态下的行为在其所使用的语言标准中没有规定。常见于编译器对源代码存在某些假设,而执行时这些假设不成立的情况。同时语言规范也不要求编译器诊断未定义行为(尽管许多简单情形确实会得到诊断),而且不要求所编译的程序做任何有意...
原创
发布博客 2019.07.29 ·
442 阅读 ·
0 点赞 ·
0 评论

golang中的io.Reader/Writer

本文整理自Go编程技巧–io.Reader/WriterGo原生的包中有一些核心的interface,其中io.Reader/Writer是比较常用的接口。很多原生的结构都围绕这个系列的接口展开,在实际的开发过程中,你会发现通过这个接口可以在多种不同的io类型之间进行过渡和转化。本文结合实际场景来总结一番。关系图表type Reader interface { Read(p []b...
转载
发布博客 2019.04.09 ·
19029 阅读 ·
4 点赞 ·
2 评论

Goroutine的调度

本文整理自The Go schedulerGoroutine的调度Go语言之所以要自己实现一个调度器有以下两个原因:协程调度。因为系统内核不能再决定协程的切换,那么协程的切换时间点则是由程序内部的调度器决定的。垃圾回收。垃圾回收的必要条件是内存位于一致状态,这就需要暂停所有的线程,如果交给系统去做,那么会暂停所有的线程使其一致。程序自身的调度器知道什么时候内存位于一致状态,那么就没有必要...
原创
发布博客 2019.04.08 ·
698 阅读 ·
0 点赞 ·
0 评论
加载更多