决策树原理实例(python代码实现)

决策数(Decision Tree)在机器学习中也是比较常见的一种算法,属于监督学习中的一种。看字面意思应该也比较容易理解,相比其他算法比如支持向量机(SVM)或神经网络,似乎决策树感觉“亲切”许多。

  • 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失值不敏感,可以处理不相关特征数据。
  • 缺点:可能会产生过度匹配的问题。
  • 使用数据类型:数值型和标称型。

简单介绍完毕,让我们来通过一个例子让决策树“原形毕露”。

一天,老师问了个问题,只根据头发和声音怎么判断一位同学的性别。
为了解决这个问题,同学们马上简单的统计了7位同学的相关特征,数据如下:

头发 声音 性别

机智的同学A想了想,先根据头发判断,若判断不出,再根据声音判断,于是画了一幅图,如下:
同学A
于是,一个简单、直观的决策树就这么出来了。头发长、声音粗就是男生;头发长、声音细就是女生;头发短、声音粗是男生;头发短、声音细是女生。
原来机器学习中决策树就这玩意,这也太简单了吧。。。
这时又蹦出个同学B,想先根据声音判断,然后再根据头发来判断,如是大手一挥也画了个决策树:
同学B

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值