一、逻辑回归
在 机器学习之线性回归 中,我们可使用梯度下降的方法得到一个映射函数 hθ(X) 来去贴近样本点,这个函数是对连续值的一个预测。
而逻辑回归是解决分类问题的一个算法,我们可以通过这个算法得到一个映射函数 f:X→y ,其中 X 为特征向量,
二、判定边界
当将训练集的样本以其各个特征为坐标轴在图中进行绘制时,通常可以找到某一个 判定边界 去将样本点进行分类。例如:
线性判定边界:
非线性判定边界:
在图中,样本的标记类型有两种类型,一种为正样本,另一种为负样本,样本的特征 x0 和 x1 为坐标轴。根据样本的特征值,可将样本绘制在图上。
在图中,可找到某个 判定边界 来对不同标签的样本进行划分。根据这个判定边界,我们可以知道哪些样本是正样本,哪些样本为负样本。
因此我们可以通过学习得到一个方程 Eθ(X)=0 来表示 判定边界,即 判定边界 为 Eθ(X)=0 的点集。(可以看作是等高超平面)
其中 θ={ θ0,θ1,θ2,...,θn} ,为保留 Eθ(X)=0 中的常数项,令特征向量 X={ 1,x1,x2,…,xn} 。
为使得我们的边界可以非线性化,对于特征 xi 可以为特征的高次幂或相互的乘积。
对于位于判定边界上的样本,其特征向量 X 可使得