机器学习之逻辑回归和softmax回归及代码示例

本文深入探讨了逻辑回归的原理,包括判定边界、二分类和sigmoid函数,以及损失函数的定义、极大似然估计和正则化。接着,文章介绍了如何从二分类扩展到多分类,重点讲解了softmax函数在多分类问题中的应用,并给出了tensorflow的代码示例。
摘要由CSDN通过智能技术生成

一、逻辑回归

机器学习之线性回归 中,我们可使用梯度下降的方法得到一个映射函数 hθ(X) 来去贴近样本点,这个函数是对连续值的一个预测。

而逻辑回归是解决分类问题的一个算法,我们可以通过这个算法得到一个映射函数 fXy ,其中 X 为特征向量, X={x0,x1,x2,,xn} y 为预测的结果。在逻辑回归这里,标签 y 为一个离散值。

二、判定边界

当将训练集的样本以其各个特征为坐标轴在图中进行绘制时,通常可以找到某一个 判定边界 去将样本点进行分类。例如:

线性判定边界


这里写图片描述

非线性判定边界


这里写图片描述

在图中,样本的标记类型有两种类型,一种为正样本,另一种为负样本,样本的特征 x0 x1 为坐标轴。根据样本的特征值,可将样本绘制在图上。

在图中,可找到某个 判定边界 来对不同标签的样本进行划分。根据这个判定边界,我们可以知道哪些样本是正样本,哪些样本为负样本。

因此我们可以通过学习得到一个方程 Eθ(X)=0 来表示 判定边界,即 判定边界 为 Eθ(X)=0 的点集。(可以看作是等高超平面

Eθ(X)=XTθ

其中 θ={ θ0,θ1,θ2,...,θn} ,为保留 Eθ(X)=0 中的常数项,令特征向量 X={ 1,x1,x2,,xn}

为使得我们的边界可以非线性化,对于特征 xi 可以为特征的高次幂或相互的乘积。

对于位于判定边界上的样本,其特征向量 X 可使得 Eθ(X)=0

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值