机器学习之朴素贝叶斯模型及代码示例

本文深入介绍了朴素贝叶斯模型的理论基础,包括贝叶斯定理和特征条件独立假设,并详细阐述了高斯、多项式和伯努利三种常见模型。同时,探讨了词袋法的特征值计算方法如TF、TF-IDF和二值计算。文章通过代码示例展示了如何在实际文本分类任务中应用朴素贝叶斯模型。
摘要由CSDN通过智能技术生成

一、朴素贝叶斯的推导

朴素贝叶斯学习(naive Bayes)是一种有监督的学习,训练时不仅要提供训练样本的特征向量X,而且还需提供训练样本的实际标记Y,是一种基于贝叶斯定理和特征条件独立假设的分类方法。

1. 贝叶斯定理:

贝叶斯定理:这里写图片描述

对于分类问题,其中 这里写图片描述 可看作 在样本的特征为X的条件下,样本的类别为Y的条件概率,这正是分类问题中我们想求的;

而右边中的 这里写图片描述 可看作 训练集中样本类别为Y的概率 ,这里写图片描述 可看作 在训练集中特征为X时,样本类别为Y的条件概率,这里写图片描述 可看作 训练集中特征为X的样本概率。可看出,右边的值我们是可以通过计算得到的。其中 这里写图片描述这里写图片描述 分别为 X和Y的先验概率,其值与训练集的选择有一定的关系。

2. 特征条件独立假设

由 1 可知,特征向量 X 的维度不一定是一维的,可能是多维的:这里写图片描述

因此 样本类别Y 的取值 这里写图片描述 是跟 样本的每一个维度取值有关的。因此可由贝叶斯定理得出下式:

这里写图片描述

又因为 朴素贝叶斯 对条件概率分布进行了条件独立性的假设,即同一类别中,样本的每一维度的特征都是 独立的 。朴素贝叶斯之所以“朴素”正因为这一假设。因此可有:

这里写图片描述

于是可得:

这里写图片描述

又由 全概率分布公式 可得:

这里写图片描述

因此我们想要得到的 样本类别y 为:

这里写图片描述

即 将概率最高的那个标记 这里写图片描述 作为预测样本的标签。

又因对于 每一个类别标记 来说:

这里写图片描述 为一常数。

因此 概率最高的样本类别y 可简化表示为:

这里写图片描述

因此 这里写图片描述这里写图片描述 的求值是关键。

二、朴素贝叶斯常用模型

在不同的朴素贝叶斯模型中, 这里写图片描述 的求值也不同。下列为朴素贝叶斯常见的三种模型。

1. 高斯朴素贝叶斯模型

在高斯朴素贝叶斯模型中,特征向量 X 的特征 通常为 连续型变量,并且假定所有特征的取值是符合高斯分布的,即:

这里写图片描述

其中 参数 这里写图片描述

  • 5
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值