自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

issey的博客

菜苟一只,自用复习。

  • 博客(47)
  • 收藏
  • 关注

原创 【NLP】多标签分类【下】

在《【NLP】多标签分类》系列的上一篇文章中,我们深入探讨了三种机器学习方法:Binary Relevance (BR)、Classifier Chains (CC) 以及 Label Powerset (LP),旨在解决多标签分类的挑战。这些方法各展所长,为我们提供了不同角度解析和处理多标签问题的视角。继先前对这些机器学习方法的详尽分析之后,本篇文章转向更为先进的解决策略——专注于序列生成方法,并以Transformer模型的一种变体,即T5预训练模型为核心,进行实验探索。

2024-04-08 18:19:31 944

原创 【NLP】多标签分类【上】

《【NLP】多标签分类》主要介绍利用三种机器学习方法和一种序列生成方法来解决多标签分类问题(包含实验与对应代码)。共分为上下两篇,上篇聚焦三种机器学习方法,分别是:Binary Relevance (BR)、Classifier Chains (CC)、Label Powerset (LP),下篇聚焦利用序列生成解决多标签分类方法,将使用Transformer完成该任务。本文共分为5节,第一节介绍实验数据来源、任务说明;第二节介绍BR、CC、LP各自原理以及优缺点;第三节介绍本文使用的多标签分类评估标准

2024-01-10 19:49:01 1097 4

原创 【NLP实战】基于Bert和双向LSTM的情感分类【下篇】

本文为该系列第三篇文章,也是最后一篇。本文共分为两部分,在第一部分,我们将学习如何使用pytorch lightning保存模型的机制、如何读取模型与对测试集做测试。第二部分,我们将探讨前文遇到的过拟合问题,调整我们的超参数,进行第二轮训练,并对比两次训练的区别。我们还将基于pytorch lightning实现回调函数,保存训练过程中val_loss最小的模型。最后,将我们第二轮训练的best model进行评估,这一次,模型在测试集上的表现将达到排行榜第13位。

2023-04-11 00:28:19 2280 17

原创 【NLP实战】基于Bert和双向LSTM的情感分类【中篇】

本文为该系列第二篇文章,在本文中,我们将学习如何用pytorch搭建我们需要的Bert+Bilstm神经网络,如何用pytorch lightning改造我们的trainer,并开始在GPU环境我们第一次正式的训练。在这篇文章的末尾,我们的模型在测试集上的表现将达到排行榜28名的位置。

2023-04-10 16:53:23 4127 19

原创 【NLP实战】基于Bert和双向LSTM的情感分类【上篇】

最近自己找了个实验做,写了很多实验记录和方法,现在我将它们整理成文章,希望能对不熟悉NLP的伙伴们起到些许帮助。如有疑问请及时联系作者。issey的博客 - 愿无岁月可回首本系列文章中不会说明环境和包如何安装,这些应该是最基础的东西,可以自己边查边安装。许多函数用法等在代码里有详细解释,但还是希望各位去看它们的官方文档,我的代码还有很多可以改进的方法,需要的函数等在官方文档都有说明。本系列将带领大家从数据获取、数据清洗、模型构建、训练,观察loss变化,调整超参数再次训练,并最后进行评估整一个过程。

2023-04-10 14:33:41 3271 4

原创 【机器学习笔记15】多分类混淆矩阵、F1-score指标详解与代码实现(含数据)

混淆矩阵简介;二分类混淆矩阵;多分类混淆矩阵;准确率、精确率、召回率、特异度;F1-score;示例与代码实现;使用sklearn对比计算结果是否正确

2022-11-01 14:31:57 12329 10

原创 【机器学习笔记14】softmax多分类模型【下篇】从零开始自己实现softmax多分类器(含具体代码与示例数据集)

softmax分类器相关公式与步骤;数据集获取;从零开始实现softmax多分类器;使用自己实现的softmax多分类器完成鸢尾花多分类;与sklrean的softmax多分类器作结果对比

2022-10-27 16:33:20 2979

原创 【机器学习笔记13】softmax多分类模型【上篇】完整流程与详细公式推导

简介;如何利用softmax对样本进行分类;明确变量与集合;进一步处理;对label向量化;样本特征的加权组合;softmax函数;损失函数;梯度下降;损失函数求偏导的详细推导;softmax多分类模型的训练流程和预测流程。

2022-10-26 01:44:33 2493 3

原创 【matlab图像处理笔记5】【图像变换】(四)图像的正交变换

推荐阅读;前言;图像正交变换简介;离散傅里叶变换;对图像进行离散傅里叶变换的作用;二维离散傅里叶变换;频谱图;示例;离散余弦变换;简介;基本原理;示例

2022-10-22 20:08:09 2456

原创 【matlab图像处理笔记4】【图像变换】(三)图像的霍夫变换

推荐阅读;前言;霍夫变换概述;霍夫变换直线检测原理;从笛卡尔坐标系到霍夫空间;两点一线的霍夫空间形式;寻找共线的点;直角坐标系存在的问题;极坐标参数空间下的霍夫变换;matlab霍夫变换直线检测示例;检测步骤;示例以及代码;原图边缘检测;对二值图像霍夫变换;寻找霍夫空间中的交点;在笛卡尔坐标系绘制线段;关于houghlines的补充说明;完整代码

2022-10-19 01:30:25 3246 4

原创 【matlab图像处理笔记3】【图像变换】(二)图像的形态学变换

推荐阅读;前言;形态学变换;简介;数学基础;结构元素;在matlab中创建结构元;腐蚀与膨胀;腐蚀;膨胀;开运算与并运算;开运算;并运算

2022-10-16 23:39:46 1050

原创 【matlab图像处理笔记2】【图像变换】(一)图像的算术运算与几何变换、图像插值算法

前言;图像的算术运算;图像相加;图像差分;图像乘法;图像除法;图像的线性组合;图像的几何变换;图像平移;图片镜像;图片转置;图像旋转;图像缩放;图像插值算法;最近邻插值算法;双线性插值算法;单线性插值;双线性插值;双三次插值算法

2022-10-16 20:10:51 2997

原创 【从FT到DFT和FFT】(三)从离散傅里叶变换到快速傅里叶变换

推荐阅读;前言;从离散傅里叶变换到快速傅里叶变换;单位根;对DFT进行分治得到FFT;计算前半截;计算后半截;快速傅里叶逆变换(IFFT)

2022-10-15 17:30:01 771

原创 【从FT到DFT和FFT】(二)从傅里叶变换到离散傅里叶变换

推荐阅读;前言;从连续傅里叶级数(FS)到离散傅里叶级数(DFS);从离散傅里叶级数(DFS)到离散傅里叶变换(DFT);二维离散傅里叶变换;

2022-10-14 23:28:06 727

原创 【从FT到DFT和FFT】(一)从三角函数正交性到傅里叶变换的详细公式推导

目录:推荐阅读;前言; 三角函数的正交性;简单解释一下正交;三角函数正交性定义;证明;展开周期为2pi的傅里叶级数;公式变换与展开;最终结果;推广为周期为2L的函数适用的傅里叶级数;换元处理;最终结果;美化公式;将傅里叶级数表示为复数形式;欧拉公式;变换公式;计算C_n;傅里叶级数的复数形式;傅里叶变换;从求和转为积分;傅里叶变换公式;傅里叶逆变换公式。

2022-10-12 20:42:06 1209 6

原创 【matlab图像处理笔记1】matlab图像类型的分类与转换

目录:前言;Matlab提供的图像类型;索引图像;灰度图像;RGB图像;二值图像;图像类型的转换;1.rgb2gray;2.gray2ind;3.rgb2ind;4.ind2gray;5.ind2rgb;6.im2bw(imbinarize);7.grayslice

2022-10-09 16:37:59 4109

原创 【机器学习笔记11】高斯混合模型(GMM)【上篇】原理与推导

目录:推荐阅读;前言;高斯混合模型简介;GMM与K-mean;高斯混合模型的概率密度函数;几何角度;混合模型角度;可能会弄混的地方;隐变量的分布与隐变量的后验概率分布;极大似然估计;EM算法求近似解;明确变量和参数;E-step;简化Q函数;展开Q函数;结论;M-step;GMM总结;GMM聚类流程;GMM优缺点;GMM的实现和应用;

2022-10-06 18:50:35 3970

原创 【机器学习笔记12】高斯混合模型(GMM)【下篇】代码实现及应用

目录:高斯混合模型聚类步骤、代码手动实现、绘制可视化动态图像、补充:使用sklearn中的GMM

2022-10-04 21:43:45 3323 7

原创 【深度学习笔记1】神经网络的搭建与简单应用

搭建神经网络的tensorflow-gpu环境遇到的各种问题,比如Duplicate registrations for type 'optimizer'、No module named 'tensorflow.keras'、tensorflow打开不了gpu、CUDA,cuDNN,tensorflow-gpu版本不搭配等;在搭建好环境后,使用tensorflow完成第一个简单的神经网络案例。

2022-09-21 12:24:33 781

原创 关于hive的启动和连接

关于hadoop启动,hive的启动和连接。

2022-09-20 21:40:14 5834 2

原创 Hexo显示Latex公式最新解决方案

2022最新hexo显示数学公式方法,不用修改escape,pandoc报错smart,数学公式无法换行解决

2022-09-18 22:27:28 2624

原创 【机器学习笔记10】EM算法——直观理解与详细推导

目录:似然函数;极大似然估计;隐变量;直观理解EM算法;隐变量的期望;EM算法公式详细推导;含隐变量的对数似然函数;利用jensen不等式转化方程;jeasen不等式转化详解;拔高下界;什么时候下界与对数似然相等;EM算法总结;EM算法应用场景;EM算法步骤;关于EM算法的重要说明;EM算法的优缺点;EM算法的应用。

2022-09-09 19:42:46 2282 2

原创 【机器学习笔记9】K邻近(KNN)原理、手动实现与具体应用

KNN算法原理与手动实现、距离度量、交叉验证选择最佳K值,KNN算法的局限与改进方法介绍;应用KNN完成鸢尾花分类与利用sklearn封装的KNN完成手写数字识别,图片的灰度化和二值化。

2022-09-06 16:24:42 2453 2

原创 【机器学习笔记8】K-mean聚类实现与应用

K-mean算法的手动实现、sklearn应用,常用的距离度量、利用K-mean进行图片压缩。

2022-09-05 00:03:40 1648

原创 【机器学习笔记7】决策树原理及应用

决策树,ID3,C4.5原理。决策树的构建与剪枝,决策树sklearn应用示例(含数据集和代码),使用Graphviz绘制决策树,使用pickle保存训练模型。

2022-09-02 17:32:22 652

原创 【机器学习笔记6】支持向量机【上篇】原理与推导

最大间隔分离超平面,硬间隔与软间隔,松弛因子,线性和非线性支持向量机的原理与推导;合页损失函数,核函数、对偶问题与KKT条件,核函数戏法。

2022-08-08 03:01:22 2422

原创 【机器学习笔记5】过拟合与正则化

过拟合的解决方法之一,正则化。含代码和示例。

2022-08-02 18:32:55 637

原创 【机器学习笔记4】逻辑回归模型

逻辑回归,sigmoid函数,对数损失函数,决策边界;代码实现,案例分析实现;F1-Score评估标准

2022-08-02 01:31:55 8842 3

原创 【机器学习笔记3】多项式回归模型

多项式回归模型、示例(含数据和代码)

2022-07-30 16:45:30 2894

原创 【机器学习笔记2】多元线性回归模型

线性回归模型、特征缩放、案例分析(附代码)

2022-07-30 02:40:25 5354 4

原创 【机器学习笔记1】一元线性回归模型及预测

一元线性回归、代价函数、梯度下降算法、样例(含数据)及代码

2022-07-28 17:05:37 6957

原创 POJ 2585 Window Pains题解

题目链接:2585 -- Window Pains (poj.org)题目描述:就不翻译了,可以自己打开链接去百度翻译。解题思路:因为9个窗口大部分都可以同时存在几个程序。所以最上面的程序一定是把另外几个遮住了。所以先写出各个格子可能的程序窗口编号的表格(下图),然后根据这个表格对输入进行构图:例:如果A遮住了B和C,那么A->B,A->C。构出有向图后,用拓扑排序判断有无环路,有环路则计算机死机。那么比如第一个例题:构造出来...

2022-01-24 00:24:43 601

原创 DFS(深度优先搜索)、BFS(广度优先搜索)

dfs是一种思想,并不是一种固定的算法,它不仅仅只在图论的问题中出现。有些时候,一些非图论的题的问题也可以转化成dfs问题。要掌握dfs必须见许多的题。这里只以最简单的题目为例,阐述dfs的思想,以及给出例题的题解。dfs的思想是什么?dfs思想的重点在于回溯,与递归类似。它会先将某一条路走到穷尽,然后换另一条路走,当某一个节点的方向全部走完后,回溯到上一个节点,重复上述过程,直到满足条件或者穷尽所有可能的路径。相信初学者根本没看懂这到底说的什么意思。dfs用文字描述起来特别抽象,所以需要例题和.

2022-01-17 22:40:33 671

原创 图的建立(邻接矩阵,邻接链表,链式前向星)

常用的建图方式有三种:邻接矩阵,邻接链表(vector建表),链式前向星。做题时我个人常用是邻接矩阵和链式前向星,链式前向星是最灵巧和节约空间的,深受ACMER喜爱。但同时也是三种算法里最难理解的。一旦理解,就是如鱼得水,所以我会着重讲链式前向星。后续图论的题,也推荐大家尽量熟悉和使用链式前向星。

2022-01-16 16:19:37 5070 1

原创 c++ STL 优先队列

C++ stl优先队列

2021-11-19 16:43:00 1400

原创 ADPC2 B二进制题解

题目链接: saikr oj | 二进制题目描述:比赛时魔怔了属于是,拉垮。解题思路:树状数组区间修改,区间查询模板+lowbit应用。他的管理层级就相当于找有多少个1,例如(二进制)1111110,他的分层共有10,100,1000,10000,100000,1000000。注意分层是不包括他自己的!所以1024最多有11个分层,每一层一个树状数组就行了。在求管理分层时,因为低位1都是2的次方,所以从2^0遍历到2^n,每次计算是否有低位1就行了。对于每一层的...

2021-10-26 20:28:36 432 2

原创 树状数组(单点修改,区间修改等)

单点修改,区间查询;区间修改,单点查询;区间修改,区间查询;

2021-10-26 20:22:36 2124 1

原创 关于lowbit函数

前言:今天比赛被一道简单的lowbit应用+树状数组卡了,好吧,我承认我很蠢,树状数组好长一段时间没复习,只知道套模板(笑),我甚至想树套树,实际上第一层就是个lowbit(我怎么这么蠢),所以今天正好趁热打铁把lowbit和树状数组一起复习了。什么是lowbit函数lowbit(x)通常与树状数组一起使用,它的作用是返回x在二进制中最低为1所对应的值。因为lowbit对10进制的数讨论意义不大,所以接下来数字皆以二进制的方式表示。例:(十进制)41:(二进制)101001例.

2021-10-24 19:28:12 1141

原创 杭电oj3306:Another kind of Fibonacci题解(矩阵快速幂)

快速矩阵的好题题目链接:Problem - 3306 (hdu.edu.cn)题目描述 :解题思路:1.首先,提取问题:已知,求2.代公式:3.化位矩阵:矩阵A的构造过程:第一行不多说。第二行需要将矩阵中的变为,倒着往回推:第三行需要将变为,同样,倒着往回推:第四行将变为。4.得到A和X矩阵后,还需要找到初始X矩阵和A的次幂关系。因为已知,所以从开始计算,所以n最小为2。此时初始矩阵为:此时矩阵A应...

2021-10-23 15:42:35 182

原创 快速幂 矩阵快速幂

前言:好像没啥好写的,链接可能还没有更新完快速幂快速幂,用于解决当n很大时的情况。通常与取模同时应用。用最笨的方法求,即。时间复杂度为,而快速幂(附带取模),可以将时间复杂度降低为。利用倍增的思想,例如,等于,又等于,即,如果n为奇数,,那么换成代码就是:ll Powermod(ll a,ll b){ ll ans=1; a=a%mod; while(b>0) { if(b%2==1) ans=(ans*a)%...

2021-10-22 12:29:51 4777 5

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除