- 博客(54)
- 收藏
- 关注
原创 【生物大分子入门】三. 配体分子的提取与结构表示方法
在现代化学与生物信息学中,分子表示方式如SMILES、SDF、Mol2广泛应用于分子建模与药物设计中。本文通过具体示例展示了如何从PDB文件中提取配体分子,生成SMILES表示,并使用RDKit和OpenBabel实现分子的可视化和格式转换。我们分析了不同分子文件格式在表示分子结构和化学属性时的优劣,帮助读者更好地理解这些工具在生物分子研究中的应用。
2024-10-22 00:31:24 1473
原创 【生物大分子入门】二.深入解析PDB文件格式:结构与信息提取
本文详细解析了蛋白质数据库(PDB)文件的结构和内容,帮助读者理解如何从中获取蛋白质、配体等生物大分子的关键信息。我们通过示例 PDB 文件 7A0C,介绍了文件的 Header、主结构及 REMARK 部分,揭示了它们在蛋白质结构、功能和实验数据中的作用。同时,本文探讨了常见的异质分子,如配体、金属离子及水分子在结构中的记录方式,并提供了数据清洗的建议。通过对 PDB 文件的深入解析,读者将更好地理解其在生物大分子研究中的应用。
2024-10-20 20:17:40 4310
原创 【生物大分子入门】一. 蛋白质与配体的基础概念
本文深入探讨了蛋白质的基本结构与功能,从氨基酸的排列到复杂的三维结构,解析了蛋白质如何通过四个层次的折叠来执行生物功能。同时,文章详细介绍了配体与蛋白质的相互作用,尤其是小分子配体在药物设计中的重要性。通过探讨蛋白质的结合口袋和配体的结合机制,本文为读者提供了理解生物分子相互作用的基础知识。
2024-10-19 21:14:22 2454
原创 【Python日志功能】三.日志记录方法与多模块日志
在本篇文章中,我们详细介绍了Python logging 模块的日志记录方法,并探讨了如何实现统一的日志管理。首先,我们展示了如何使用不同的日志级别(如debug、info、warning、error 和 critical)来记录程序的运行状态。此外,我们还介绍了 exception 方法,用于捕获并记录异常信息及其堆栈跟踪,帮助开发者快速定位问题。最后,文章重点讲解了如何在多模块项目中通过统一的日志配置实现集中管理,确保各模块的日志输出格式一致,便于调试和维护。
2024-09-17 21:37:07 629 1
原创 【Python日志功能】二.高级配置与日志处理器
在第二篇文章中,我们深入探讨了Python logging 模块的高级配置,包括日志处理器、格式器和过滤器的使用。首先,介绍了 StreamHandler、FileHandler 等日志处理器,以及 RotatingFileHandler 和 TimedRotatingFileHandler 实现日志轮转的配置。接着,讲解了日志格式器的作用,如何通过自定义格式控制日志输出。最后,展示了日志过滤器的使用,根据特定规则筛选日志消息。
2024-09-16 11:56:06 997
原创 【Python日志功能】一.日志基础与基本配置
本文介绍了Python logging 模块的基础与配置,涵盖日志的概念、日志级别(DEBUG、INFO、WARNING、ERROR、CRITICAL)以及如何将日志输出到控制台或文件。通过两个实验,展示了如何使用基本配置输出日志,并通过YAML文件配置日志处理器和格式化器,灵活控制日志的输出目标和格式。在总结部分,文章强调了日志系统的重要性,并为后续的高级日志配置做了铺垫,包括使用不同的日志处理器、格式化器和过滤器,以满足更复杂的日志需求。
2024-09-15 22:13:34 1227
原创 【NLP】多标签分类【下】
在《【NLP】多标签分类》系列的上一篇文章中,我们深入探讨了三种机器学习方法:Binary Relevance (BR)、Classifier Chains (CC) 以及 Label Powerset (LP),旨在解决多标签分类的挑战。这些方法各展所长,为我们提供了不同角度解析和处理多标签问题的视角。继先前对这些机器学习方法的详尽分析之后,本篇文章转向更为先进的解决策略——专注于序列生成方法,并以Transformer模型的一种变体,即T5预训练模型为核心,进行实验探索。
2024-04-08 18:19:31 1559 4
原创 【NLP】多标签分类【上】
《【NLP】多标签分类》主要介绍利用三种机器学习方法和一种序列生成方法来解决多标签分类问题(包含实验与对应代码)。共分为上下两篇,上篇聚焦三种机器学习方法,分别是:Binary Relevance (BR)、Classifier Chains (CC)、Label Powerset (LP),下篇聚焦利用序列生成解决多标签分类方法,将使用Transformer完成该任务。本文共分为5节,第一节介绍实验数据来源、任务说明;第二节介绍BR、CC、LP各自原理以及优缺点;第三节介绍本文使用的多标签分类评估标准
2024-01-10 19:49:01 2289 13
原创 【NLP实战】基于Bert和双向LSTM的情感分类【下篇】
本文为该系列第三篇文章,也是最后一篇。本文共分为两部分,在第一部分,我们将学习如何使用pytorch lightning保存模型的机制、如何读取模型与对测试集做测试。第二部分,我们将探讨前文遇到的过拟合问题,调整我们的超参数,进行第二轮训练,并对比两次训练的区别。我们还将基于pytorch lightning实现回调函数,保存训练过程中val_loss最小的模型。最后,将我们第二轮训练的best model进行评估,这一次,模型在测试集上的表现将达到排行榜第13位。
2023-04-11 00:28:19 3992 20
原创 【NLP实战】基于Bert和双向LSTM的情感分类【中篇】
本文为该系列第二篇文章,在本文中,我们将学习如何用pytorch搭建我们需要的Bert+Bilstm神经网络,如何用pytorch lightning改造我们的trainer,并开始在GPU环境我们第一次正式的训练。在这篇文章的末尾,我们的模型在测试集上的表现将达到排行榜28名的位置。
2023-04-10 16:53:23 7574 32
原创 【NLP实战】基于Bert和双向LSTM的情感分类【上篇】
最近自己找了个实验做,写了很多实验记录和方法,现在我将它们整理成文章,希望能对不熟悉NLP的伙伴们起到些许帮助。如有疑问请及时联系作者。issey的博客 - 愿无岁月可回首本系列文章中不会说明环境和包如何安装,这些应该是最基础的东西,可以自己边查边安装。许多函数用法等在代码里有详细解释,但还是希望各位去看它们的官方文档,我的代码还有很多可以改进的方法,需要的函数等在官方文档都有说明。本系列将带领大家从数据获取、数据清洗、模型构建、训练,观察loss变化,调整超参数再次训练,并最后进行评估整一个过程。
2023-04-10 14:33:41 5947 7
原创 【机器学习笔记15】多分类混淆矩阵、F1-score指标详解与代码实现(含数据)
混淆矩阵简介;二分类混淆矩阵;多分类混淆矩阵;准确率、精确率、召回率、特异度;F1-score;示例与代码实现;使用sklearn对比计算结果是否正确
2022-11-01 14:31:57 22747 10
原创 【机器学习笔记14】softmax多分类模型【下篇】从零开始自己实现softmax多分类器(含具体代码与示例数据集)
softmax分类器相关公式与步骤;数据集获取;从零开始实现softmax多分类器;使用自己实现的softmax多分类器完成鸢尾花多分类;与sklrean的softmax多分类器作结果对比
2022-10-27 16:33:20 3979
原创 【机器学习笔记13】softmax多分类模型【上篇】完整流程与详细公式推导
简介;如何利用softmax对样本进行分类;明确变量与集合;进一步处理;对label向量化;样本特征的加权组合;softmax函数;损失函数;梯度下降;损失函数求偏导的详细推导;softmax多分类模型的训练流程和预测流程。
2022-10-26 01:44:33 3604 4
原创 【matlab图像处理笔记5】【图像变换】(四)图像的正交变换
推荐阅读;前言;图像正交变换简介;离散傅里叶变换;对图像进行离散傅里叶变换的作用;二维离散傅里叶变换;频谱图;示例;离散余弦变换;简介;基本原理;示例
2022-10-22 20:08:09 3192
原创 【matlab图像处理笔记4】【图像变换】(三)图像的霍夫变换
推荐阅读;前言;霍夫变换概述;霍夫变换直线检测原理;从笛卡尔坐标系到霍夫空间;两点一线的霍夫空间形式;寻找共线的点;直角坐标系存在的问题;极坐标参数空间下的霍夫变换;matlab霍夫变换直线检测示例;检测步骤;示例以及代码;原图边缘检测;对二值图像霍夫变换;寻找霍夫空间中的交点;在笛卡尔坐标系绘制线段;关于houghlines的补充说明;完整代码
2022-10-19 01:30:25 4776 4
原创 【matlab图像处理笔记3】【图像变换】(二)图像的形态学变换
推荐阅读;前言;形态学变换;简介;数学基础;结构元素;在matlab中创建结构元;腐蚀与膨胀;腐蚀;膨胀;开运算与并运算;开运算;并运算
2022-10-16 23:39:46 1604
原创 【matlab图像处理笔记2】【图像变换】(一)图像的算术运算与几何变换、图像插值算法
前言;图像的算术运算;图像相加;图像差分;图像乘法;图像除法;图像的线性组合;图像的几何变换;图像平移;图片镜像;图片转置;图像旋转;图像缩放;图像插值算法;最近邻插值算法;双线性插值算法;单线性插值;双线性插值;双三次插值算法
2022-10-16 20:10:51 4059
原创 【从FT到DFT和FFT】(三)从离散傅里叶变换到快速傅里叶变换
推荐阅读;前言;从离散傅里叶变换到快速傅里叶变换;单位根;对DFT进行分治得到FFT;计算前半截;计算后半截;快速傅里叶逆变换(IFFT)
2022-10-15 17:30:01 963
原创 【从FT到DFT和FFT】(二)从傅里叶变换到离散傅里叶变换
推荐阅读;前言;从连续傅里叶级数(FS)到离散傅里叶级数(DFS);从离散傅里叶级数(DFS)到离散傅里叶变换(DFT);二维离散傅里叶变换;
2022-10-14 23:28:06 1203
原创 【从FT到DFT和FFT】(一)从三角函数正交性到傅里叶变换的详细公式推导
目录:推荐阅读;前言; 三角函数的正交性;简单解释一下正交;三角函数正交性定义;证明;展开周期为2pi的傅里叶级数;公式变换与展开;最终结果;推广为周期为2L的函数适用的傅里叶级数;换元处理;最终结果;美化公式;将傅里叶级数表示为复数形式;欧拉公式;变换公式;计算C_n;傅里叶级数的复数形式;傅里叶变换;从求和转为积分;傅里叶变换公式;傅里叶逆变换公式。
2022-10-12 20:42:06 1617 6
原创 【matlab图像处理笔记1】matlab图像类型的分类与转换
目录:前言;Matlab提供的图像类型;索引图像;灰度图像;RGB图像;二值图像;图像类型的转换;1.rgb2gray;2.gray2ind;3.rgb2ind;4.ind2gray;5.ind2rgb;6.im2bw(imbinarize);7.grayslice
2022-10-09 16:37:59 4822
原创 【机器学习笔记11】高斯混合模型(GMM)【上篇】原理与推导
目录:推荐阅读;前言;高斯混合模型简介;GMM与K-mean;高斯混合模型的概率密度函数;几何角度;混合模型角度;可能会弄混的地方;隐变量的分布与隐变量的后验概率分布;极大似然估计;EM算法求近似解;明确变量和参数;E-step;简化Q函数;展开Q函数;结论;M-step;GMM总结;GMM聚类流程;GMM优缺点;GMM的实现和应用;
2022-10-06 18:50:35 15417 2
原创 【机器学习笔记12】高斯混合模型(GMM)【下篇】代码实现及应用
目录:高斯混合模型聚类步骤、代码手动实现、绘制可视化动态图像、补充:使用sklearn中的GMM
2022-10-04 21:43:45 4668 7
原创 【深度学习笔记1】神经网络的搭建与简单应用
搭建神经网络的tensorflow-gpu环境遇到的各种问题,比如Duplicate registrations for type 'optimizer'、No module named 'tensorflow.keras'、tensorflow打开不了gpu、CUDA,cuDNN,tensorflow-gpu版本不搭配等;在搭建好环境后,使用tensorflow完成第一个简单的神经网络案例。
2022-09-21 12:24:33 1135
原创 Hexo显示Latex公式最新解决方案
2022最新hexo显示数学公式方法,不用修改escape,pandoc报错smart,数学公式无法换行解决
2022-09-18 22:27:28 4220
原创 【机器学习笔记10】EM算法——直观理解与详细推导
目录:似然函数;极大似然估计;隐变量;直观理解EM算法;隐变量的期望;EM算法公式详细推导;含隐变量的对数似然函数;利用jensen不等式转化方程;jeasen不等式转化详解;拔高下界;什么时候下界与对数似然相等;EM算法总结;EM算法应用场景;EM算法步骤;关于EM算法的重要说明;EM算法的优缺点;EM算法的应用。
2022-09-09 19:42:46 4228 3
原创 【机器学习笔记9】K邻近(KNN)原理、手动实现与具体应用
KNN算法原理与手动实现、距离度量、交叉验证选择最佳K值,KNN算法的局限与改进方法介绍;应用KNN完成鸢尾花分类与利用sklearn封装的KNN完成手写数字识别,图片的灰度化和二值化。
2022-09-06 16:24:42 3470 2
原创 【机器学习笔记7】决策树原理及应用
决策树,ID3,C4.5原理。决策树的构建与剪枝,决策树sklearn应用示例(含数据集和代码),使用Graphviz绘制决策树,使用pickle保存训练模型。
2022-09-02 17:32:22 777
原创 【机器学习笔记6】支持向量机【上篇】原理与推导
最大间隔分离超平面,硬间隔与软间隔,松弛因子,线性和非线性支持向量机的原理与推导;合页损失函数,核函数、对偶问题与KKT条件,核函数戏法。
2022-08-08 03:01:22 3257
原创 POJ 2585 Window Pains题解
题目链接:2585 -- Window Pains (poj.org)题目描述:就不翻译了,可以自己打开链接去百度翻译。解题思路:因为9个窗口大部分都可以同时存在几个程序。所以最上面的程序一定是把另外几个遮住了。所以先写出各个格子可能的程序窗口编号的表格(下图),然后根据这个表格对输入进行构图:例:如果A遮住了B和C,那么A->B,A->C。构出有向图后,用拓扑排序判断有无环路,有环路则计算机死机。那么比如第一个例题:构造出来...
2022-01-24 00:24:43 652
原创 DFS(深度优先搜索)、BFS(广度优先搜索)
dfs是一种思想,并不是一种固定的算法,它不仅仅只在图论的问题中出现。有些时候,一些非图论的题的问题也可以转化成dfs问题。要掌握dfs必须见许多的题。这里只以最简单的题目为例,阐述dfs的思想,以及给出例题的题解。dfs的思想是什么?dfs思想的重点在于回溯,与递归类似。它会先将某一条路走到穷尽,然后换另一条路走,当某一个节点的方向全部走完后,回溯到上一个节点,重复上述过程,直到满足条件或者穷尽所有可能的路径。相信初学者根本没看懂这到底说的什么意思。dfs用文字描述起来特别抽象,所以需要例题和.
2022-01-17 22:40:33 773
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人