细粒度图像识别文章 Picking Deep Filter Responses for Fine-grained Image Recognition 阅读笔记

本文是关于细粒度图像识别的研究,通过自动part detection方法,特别是利用深度滤波器响应选择,实现弱和判别性检测器的学习。作者提出的新颖方法包括初始化正样本的选择,正则化检测器训练,以及使用Spatially Weighted Fisher Vector编码特征,以增强部分的重要性,提高识别精度。

细粒度图像识别文章 Picking Deep Filter Responses for Fine-grained Image Recognition 阅读笔记


原文章: Picking Deep Filter Responses for Fine-grained Image Recognition(CVPR2016)

摘要: 细粒度图像识别一直以来都是极具挑战性的任务。大多数细粒度图像识别算法都基于object和part级别的标注,来提高识别的准确率。文章提出了一种不需要任何object和part级别的标注的细粒度识别网络,并在CUB-200-2011上进行识别验证,并取得了很好的效果。

1 简介

1.1 背景

  • 细粒度图像识别指的是在一个大类中的数个子类进行识别(例如识别不同鸟类的种类),它介于basic-level分类(常规的图像分类)和individual instances识别(人脸检测)之间。一个普通人对于前者可以很好地识别,但后者往往需要大量的专业知识,才能从一些细微的地方进行区分,没有接受过专业培训的人是很难做到的。
  • 为了实现细粒度图像识别,大多数工作在训练和测试时都需要object或者part级别的标注,这些标注等于是告诉了网络需要从哪里寻找识别的突破口。有一些工作在测试时不额外使用标注,但是在训练阶段还是需要大量的带标注的图像,并且在大尺度图像识别时显得很吃力。因此,现在人们开始探索完全不使用标注的识别网络,但经常会面临需要从头开始训练网络、复杂度优化等问题。

1.2 文章贡献

  • 作者做了两大贡献。第一个是提出了新颖的自动part detection方法,这个part检测方法有两点贡献:
    • 第一,提出了新颖的检测学习初始化方法。作者先用原始的selective search方法提取一些patch,将它们送入VGG-M网络,查看conv4的输出。结果发现有些通道(channle)对一些特定图案相应,而有些响应十分混乱,对我们的任务没有帮助(见Figure 1)。作者的初始化方式的关键点就在于精巧地选择响应显著且一致的deep filters。
### 问题解释 “'cppsjd - srv - si' URL not provided. Will try picking an instance via load - balancing” 通常意味着在系统中尝试访问名为 'cppsjd - srv - si' 的服务时,没有明确提供该服务的具体 URL。因此,系统会尝试通过负载均衡机制来选择一个可用的服务实例。这种情况在微服务架构中较为常见,当使用服务发现和负载均衡工具(如 Eureka、Consul、Nginx 等)时,如果客户端没有直接配置服务的 URL,就会触发这样的机制。 ### 解决方案 #### 1. 检查服务注册发现配置 确保 'cppsjd - srv - si' 服务已经正确注册到服务发现中心(如 Eureka、Consul)。以 Spring Cloud Eureka 为例,服务提供者需要在 `application.properties` 或 `application.yml` 中正确配置: ```yaml spring: application: name: cppsjd - srv - si eureka: client: service-url: defaultZone: http://eureka-server:8761/eureka/ ``` 同时,服务消费者也需要正确配置服务发现客户端,以使用负载均衡功能: ```yaml spring: application: name: consumer-service eureka: client: service-url: defaultZone: http://eureka-server:8761/eureka/ ``` #### 2. 手动指定 URL 如果不想使用服务发现和负载均衡机制,可以在客户端代码中手动指定 'cppsjd - srv - si' 服务的 URL。例如,在 Java 代码中使用 `RestTemplate` 调用服务: ```java import org.springframework.web.client.RestTemplate; public class ServiceClient { private static final String SERVICE_URL = "http://cppsjd - srv - si - instance:port"; private RestTemplate restTemplate = new RestTemplate(); public String callService() { return restTemplate.getForObject(SERVICE_URL, String.class); } } ``` #### 3. 检查负载均衡器配置 如果使用了负载均衡器(如 Nginx、HAProxy),确保其配置正确。以 Nginx 为例,配置如下: ```nginx upstream cppsjd - srv - si { server cppsjd - srv - si - instance1:port; server cppsjd - srv - si - instance2:port; } server { listen 80; location / { proxy_pass http://cppsjd - srv - si; } } ``` #### 4. 检查网络连接 确保客户端能够正常访问服务发现中心和服务实例。可以使用 `ping` 和 `telnet` 命令进行测试: ```sh ping eureka-server telnet cppsjd - srv - si - instance port ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值