Deep Image Prior

本文揭示了深度卷积网络在没有经过任何学习的情况下,其结构本身就能捕获大量低级图像统计信息,用于图像恢复任务如去噪、超分辨。通过仅使用随机初始化的网络来拟合退化图像,这种方法在多个重建任务上展现出竞争力,挑战了网络必须从数据中学习图像先验的传统观点。
摘要由CSDN通过智能技术生成

Deep Image Prior


摘要

深度卷积网络已经成为图像生成和重建的常用工具。人们猜想,他们优秀的表现是归功于他们能够从大量图像样本中学习到真实图像先验的能力。而相反,本文中作者展示生成网络在经过任何学习之前就能够捕获大量的低级图像统计信息,也就是说,这些信息可能并不是通过大量的数据集学习得来。文中具体的实验方法,就是用一个随机初始化的生成网络,仅通过给定的图像就能得到重建后的图像,这种方法在去噪、超分辨、修补等人物上都有优异的表现。它也连接了两个非常流行的图像重建方法派别:基于学习的方法和基于非学习方法(例如self-similarity)。

简介

深度卷积神经网络(ConvNets)在图像去噪、超分辨等重建任务上达到了 state-of-the-art。相似结构的ConvNets更普遍地用在生成图像上,例如GAN、variational autoencoders、direct pixelwise error minimization。

这些 ConvNets 几乎都是基于大量图像数据集的训练,因此有一种假设说他们优异的表现由于它们从数据中学习真实图像先验的能力。然而单单学习还不足以解释深度网络的优异表现。例如,在文章 [Understanding deep learning requires rethinking generalization] 中,即使将标签随机打乱,同样泛化性能好的图像分类网络也可以很好地拟合这些数据。因此,泛化要求网络结构与数据结构“共鸣”。然而它们相互作用的机理,尤其是图像生成的,还尚不清楚。

在本文中,作者展示了一个与期望相反的现象,大量图像统计信息是由卷积生成网络的结构捕获的,而非任何学习能力。这对于解决各种图像恢复问题所需的图像统计信息尤其如此,在这些图像恢复问题中,我们需要图像先验来整理退化过程中丢失的信息。

为了展示这些,作者使用一个未训练的网络,来解决上述的重建问题,做法是让这个网络去拟合该张退化的图像,再无别的数据。在这个框架中,网络的权重就像是恢复的图像的参数化。给定一个退化的图像和对应的观测模型,网络的权重随机初始化,并且被拟合以最大化它们的似然性。

这个简单的构想在图像重建任务重很具竞争性。网络中没有任何一层面是从数据学习来的,而且网络的权重总是随机初始化,因此唯一的先验信息就是网络结构本身。这可能是第一次直接研究由卷积生成网络捕获的先验,而不依赖于从图像学习网络参数。

方法

图像生成的网络,大都是通过公式 x=fθ(z) x = f θ ( z ) 的形式,把随机编码 z z 映射到图像 x 。这个方法可以用来从随机分布中采样真实图像,另外这个随机分布也可以被定为坍塌的图像 x0 x 0 ,以用来解决图像重建逆问题。

作者把神经网络翻译为参数化过程: x=fθ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值