1、pdist函数
调用格式:Y=pdist(X,’metric’)
说明:用 ‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。’
X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。
metric’取值如下:
‘euclidean’:欧氏距离(默认);
‘seuclidean’:标准化欧氏距离;
‘mahalanobis’:马氏距离;
‘cityblock’:布洛克距离;
‘minkowski’:明可夫斯基距离;
‘cosine’: 夹角余弦
‘correlation’: 相关距离
‘spearman'
‘hamming’: 汉明距离
‘jaccard’: 杰卡德距离& 杰卡德相似系数
‘chebychev’:Chebychev距离
2、pdist2函数
D = pdist2(X,Y)
D = pdist2(X,Y,distance)
D = pdist2(X,Y,'minkowski',P)
D = pdist2(X,Y,'mahalanobis',C)
D = pdist2(X,Y,distance,'Smallest',K)
D = pdist2(X,Y,distance,'Largest',K)
[D,I] = pdist2(X,Y,distance,'Smallest',K)
[D,I] = pdist2(X,Y,distance,'Largest',K)
clc;clear;
x = rand(4,3)
y = rand(1,3)
md1 = pdist2(x,y,'Euclidean');
md2 = pdist2(x,y,'seuclidean');
md3 = pdist2(x,y,'mahalanobis');
md4 = pdist2(x,y,'cityblock');
md5 = pdist2(x,y,'minkowski',p);
md6 = pdist2(x,y,'

本文介绍了MATLAB中计算距离的多种方法,包括pdist和pdist2函数的使用,如欧氏距离、马氏距离、汉明距离等,并通过实例展示了它们的计算过程。此外,还提到了mahal函数和squareform函数在处理距离矩阵中的应用。
最低0.47元/天 解锁文章

2446

被折叠的 条评论
为什么被折叠?



