Python学习-机器学习实战-ch05 Logistic回归

好久没有更新了,终于把毕业论文初稿给老师了,赶紧继续学习吧!
第一次尝试用markdown


《机器学习实战》第五章:Logistic回归

  通常,我们需要把输入值转换成类别输出。在只有两个类别的时候,最简单的函数即单位阶跃函数。但是,从0到1的转换瞬间 通常是非常难确定的。所以,Sigmoid函数就可以用来代替单位阶跃函数啦。
  Sigmoid函数公式如下:

Γ(z)=11+ez

                       sigmoid函数曲线
                      当x=0时,sigmoid函数值为0.5。
                      随着x增大,sigmoid值逼近1。
                      随着x减小,sigmoid值逼近0。

  Logistic回归的思想就是,将特征值乘以回归系数,求和后的值输入到sigmoid函数中,进而得到分类结果。
  我们将sigmoid函数的输入即为z,则z由以下公式得出:

z=w0x0+w1x1+w2x2++wnxn

  其中, 表示分类器的输入数据,向量w就是Logistic的参数。当然,上式也可以直接写成
z=wTx

  那么,现在问题就变成了,求最优的回归系数 w

  为了寻找最佳参数,书中介绍了最优化理论的基础知识。

1.梯度上升法

  梯度上升法的基本思想是:要找某个函数的最大值,最好的方法是沿着该函数的梯度方向探寻。

f(x,y)=f(x,y)xf(x,y)y

这个梯度 表示沿 x 的方向移动了f(x,y)x,沿 y 的方向移动了f(x,y)y
  梯度上升算法的迭代公式如下:
w:=w+αwf(w)

  其中, α 表示移动量的大小,即步长。该迭代一直被执行,直到达到某个停止条件为止。
   *****************************************************************************************************************************
  更常听到的是梯度下降法。与梯度上升法一样的,但是加法变成减法,即迭代公式变为:
w:=wαwf(w)

        梯度上升法用来求函数的最大值,梯度下降法用来求函数最小值。
   *******************************************************************************************************************************
  
  梯度上升法的伪代码如下:
  ××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××
  - 每个回归系数初始化为1
  - 重复R次:
    - 计算整个数据集的梯度
    - 使用alpha*gradient更新回归系数的向量
  - 返回回归系数
  ××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

代码如下: 

from numpy import *
def loadDataSet():
    dataMat=[];labelMat=[]
    fr=open('testSet.txt')
    for line in fr.readlines():
        lineArr=line.strip().split()
        dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+exp(-inX))

def gradAscent(dataMatIn,classLabels):
    dataMatrix=mat(dataMatIn)
    #mat()是numpy内的函数,将数组转化为矩阵
    labelMat=mat(classLabels).transpose()
    #transpose()函数用于矩阵转置
    m,n=shape(dataMatrix)
    alpha=0.001
    #步长
    maxCycles=500
    weights=ones((n,1))
    for k in range(maxCycles):
        h=sigmoid(dataMatrix*weights)
        #sigmoid函数的分类结果
        error=(labelMat-h)
        #真实与预测的误差
        weights=weights+alpha*dataMatrix.transpose()*error
        #用误差乘以数据矩阵的转置表示梯度,此包含一个数学推导
    return weights

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr=array(dataMat)
    n=shape(dataArr)[0]
    #shape求的是大小,[0]表示行数,即数据个数
    xcord1=[];ycord1=[]
    xcord2=[];ycord2=[]
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])

    fig=plt.figure()
    ax=fig.add_subplot(111)
    ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
    ax.scatter(xcord2,ycord2,s=30,c='green')
    #绘制正反类散点图
    x=arange(-3.0,3.0,0.1)
    y=(-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x,y)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.show()

结果如下:
    梯度上升算法结果
  
  梯度上升算法每次更新回归系数时都需要遍历整个数据集。当样本数量个数巨大或者特征维度特别高时,运算复杂度极高。所以,使用了新方法称为:随机梯度上升算法。可以在新样本到来时对分类器进行增量式更新,因此它是一个“在线学习算法“。对应的,一次处理所有数据称为“批处理”
 随机梯度上升法的伪代码如下:
  ××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××
  - 每个回归系数初始化为1
  - 对数据集中每个样本(重复R次)
    - 计算该样本(整个数据集)的梯度
    - 使用alpha*gradient更新回归系数的向量
  - 返回回归系数
  ××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××
  

def stocGradAscent0(dataMatrix,classLabels):
    m,n=shape(dataMatrix)
    alpha=0.01
    weights=ones(n)
    #m表示数据样本的个数
    for i in range(m):
        h=sigmoid(sum(dataMatrix[i]*weights))
        error=classLabels[i]-h
        weights=weights+alpha*error*dataMatrix[i]
        #此处与原本方法不同的:梯度上升算法是对整个数据集进行操作,所以是以矩阵进行计算
        #此函数h和error都是向量
        #因为是对每个样本进行操作的
    return weights

结果如下:
    随机梯度上升算法
  
  数据集并非是线性可分,该方法受样本的影响较大,容易在每次迭代中发生系数波动。所以,对随机梯度上升算法进行改进。
  

def stocGradAscent1(dataMatrix,classLabels,numIter=150):
    m,n=shape(dataMatrix)
    weights=ones(n)
    for j in range(numIter):
        dataIndex=list(range(m))
        for i in range(m):
            alpha=4/(1.0+j+i)+0.01
            randIndex=int(random.uniform(0,len(dataIndex)))
            #uniform(x,y) 方法将随机生成下一个实数,它在[x,y]范围内。
            h=sigmoid(sum(dataMatrix[randIndex]*weights))
            error=classLabels[randIndex]-h
            weights=weights+alpha*error*dataMatrix[randIndex]
            del (dataIndex[randIndex])
    return weights

  此处,alpha在每次迭代每个样本时都进行调整。alpha会随着迭代次数不断减少,但不会减小到0。随机选取样本的方法可以减少周期的波动。
  此处将dataIndex从range外改成list型。
      改进后的随机梯度上升算法

实例
分类函数:

def classifyVector(inX,weights):
    prob=sigmoid(sum(inX*weights))
    if prob>0.5:
        return 1.0
    else:
        return 0.0

测试过程:

def coliTest():
    frTrain=open('horseColicTraining.txt')
    frTest=open('horseColicTraining.txt')
    trainingSet=[]
    trainingLabels=[]
    for line in frTrain.readlines():
        currLine=line.strip().split('\t')
        lineArr=[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[21]))
    trainWeights=stocGradAscent1(array(trainingSet),trainingLabels,500)
    errorCount=0
    numTestVec=0.0
    for line in frTest.readlines():
        numTestVec+=1.0
        currLine=line.strip().split('\t')
        lineArr=[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr),trainWeights))!= round(float(currLine[21])):
            errorCount+=1
    errorRate=(float(errorCount)/numTestVec)
    print('the error rate of this test is:%f' %errorRate)
    return errorRate
def multiTest():
    numTest=10
    errorSum=0.0
    for k in range(numTest):
        errorSum+=coliTest()
    print('after %d iterations the average error rate is :%f' %(numTest,errorSum/float(numTest)))

实例结果

  Logistic回归的目的是寻找一个非线性函数Sigmoid的最佳拟合参数,求解过程可由优化算法来完成。在最优化算法中,最常用的是梯度上升算法。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值