自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

haoji007的博客

机器学习,深度学习,遥感图像应用

转载 基于内容的图像检索技术:从特征到检索

基于内容的图像检索(CBIR, Content Based Image Retrieval)是相对成熟的技术领域,在工业界也有广泛的应用场景,如搜索引擎(Google、百度)的以图搜图功能,各电商网站(淘宝、Amazon、ebay)的相似商品搜索,社交平台(Pinterest)的相似内容推荐等。本文从图像检索流程出发,结合我们团队在社交应用中的相似图片、视频检索中的实践经验,介绍构建基于内容的图像检索系统所涉及的算法技术,包括特征提取、索引构建、近邻搜索等技术,供相关领域研发人员参考。在介绍视...

2020-07-05 21:36:08 150

转载 Python数据分析之pandas常用命令整理!

pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。导入pandas库:import pandas as pd导入Series, DataFrame:from pandas import Series, DataFramepanda

2020-07-05 21:34:54 80

转载 Linux学习笔记(13)

linux下tomcat服务器调优下面这个是配置的tomcat/bin/catalina.sh 第118行esac下一行添加如下内容JAVA_OPTS="-Xms3072m -Xmx4096m -Xmn3072m -XX:PermSize=500m -XX:MaxPermSize=500m -Xss256K -XX:+DisableExplicitGC -XX:SurvivorRatio=2 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParal

2020-07-05 21:34:46 58

转载 Linux学习笔记(12)

Linux下配置Tomcat服务器一、准备工作1、java -version 检查是否有java环境,没有则需要去安装并配置到环境变量中。2、下载tomcat包,下载地址:http://tomcat.apache.org/download-70.cgi可以本地下载后上传到服务器上,也可以直接在服务器上使用wget命令下载,本案例直接使用wget命令下载 :[root@localhost ~]# wgethttp://apache.fayea.com/tomcat/tomcat-7/v7.

2020-07-05 21:34:31 62

转载 Linux学习笔记(11)

Linux平台下快速搭建FTP服务器FTP 是File Transfer Protocol(文件传输协议)的英文简称,而中文简称为“文传协议”。用于Internet上的控制文件的双向传输。同时,它也是一个应用程序(Application)。基于不同的操作系统有不同的FTP应用程序,而所有这些应用程序都遵守同一种协议以传输文件。在FTP的使用当中,用户经常遇到两个概念:"下载"(Download)和"上传"(Upload)。一般在各种linux的发行版中,默认带有的ftp软件是vsftp,从各个lin

2020-07-05 21:34:17 42

转载 matlab里面如何保留小数特定位数

[转载]Matlab取整函数有:fix,floor,ceil,round.取整函数在编程时有很大用处。一、取整函数1.向零取整(截尾取整)fix-向零取整(Roundtowardszero);>>fix(3.6)ans= 32.向负无穷取整(不超过x的最大整数-高斯取整)floor-向负无穷取整(Roundtowardsminusinfinity);>>floor(-3.6)ans...

2020-07-05 21:33:29 265

转载 MATLAB的var与std函数 与 均值,方差,标准差,均方差,均分误差

从定义上来讲,(样本)均值,方差,标准差,均方差,均分误差分别为:均值:方差:标准差:均方差=标准差均方误差:matlab中的var函数和std函数用来计算方差var函数计算使用的公式为:std函数使用的公式为:若要求整体方差,即除数不是n-1而是n,使用var(x,1)即可。...

2020-07-04 23:23:31 168

转载 face_recognition基础接口

face_recognition使用世界上最简单的人脸识别库,在Python或命令行中识别和操作人脸。使用dlib最先进的人脸识别技术构建而成,并具有深度学习功能。 该模型在Labeled Faces in the Wild基准中的准确率为99.38%。face_recognition 官方文档:https://pypi.org/project/face_recognition/  1|1查找图片中的面孔   1 2 3 4 5...

2020-05-29 03:30:14 123

转载 Linux学习笔记(10)

服务器日常监视top命令「实时动态查看系统整体运行情况」语法top(选项)选项-b:以批处理模式操作;-c:显示完整的治命令;-d:屏幕刷新间隔时间;-I:忽略失效过程;-s:保密模式;-S:累积模式;-i<时间>:设置间隔时间;-u<用户名>:指定用户名;-p<进程号>:指定进程;-n<次数>:循环显示的次数。top交互命令在top命令执行过程中可以使用的一些交互命令。这些命令都是单字母的,如果在命令行中使用了-s选项, 其中

2020-05-28 00:23:41 29

转载 Linux学习笔记(9)

Shell 函数linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。shell中函数的定义格式如下:[ function ] funname [()]{ action; [return int;]}说明:1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。 2、参数返回,可以显示加:return 返回,如果不加,将以最后一条命令运行结果,作为返回值。 return后跟数值n(0-255下面的

2020-05-28 00:22:28 41

转载 Linux学习笔记(8)

Shell echo命令Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:echo string您可以使用echo实现更复杂的输出格式控制。1.显示普通字符串:echo "It is a test"这里的双引号完全可以省略,以下命令与上面实例效果一致:echo It is a test2.显示转义字符echo "\"It is a test\""结果将是:"It is a test"同样,双引号也可以省

2020-05-28 00:21:29 33

转载 Linux学习笔记(7)

Shell 基本运算符Shell 和其他编程语言一样,支持多种运算符,包括:算数运算符 关系运算符 布尔运算符 字符串运算符 文件测试运算符原生bash不支持简单的数学运算,但是可以通过其他命令来实现,例如 awk 和 expr,expr 最常用。expr 是一款表达式计算工具,使用它能完成表达式的求值操作。例如,两个数相加(注意使用的是反引号 ` 而不是单引号 '):#!/bin/bashval=`expr 2 + 2`echo "两数之和为 : $val"...

2020-05-28 00:20:17 27

转载 Linux学习笔记(6)

Shell 传递参数我们可以在执行 Shell 脚本时,向脚本传递参数,脚本内获取参数的格式为:$n。n代表一个数字,1 为执行脚本的第一个参数,2 为执行脚本的第二个参数,以此类推……实例以下实例我们向脚本传递三个参数,并分别输出,其中$0为执行的文件名:#!/bin/bash# author:菜鸟教程# url:www.runoob.comecho "Shell 传递参数实例!";echo "执行的文件名:$0";echo "第一个参数为:$1";echo "...

2020-05-28 00:19:16 25

转载 Linux学习笔记(5)

Shell 教程Shell 脚本Shell 脚本(shell script),是一种为 shell 编写的脚本程序。业界所说的 shell 通常都是指 shell 脚本,但读者朋友要知道,shell 和 shell script 是两个不同的概念。由于习惯的原因,简洁起见,本文出现的 "shell编程" 都是指 shell 脚本编程,不是指开发 shell 自身。Shell 环境Shell 编程跟 java、php 编程一样,只要有一个能编写代码的文本编辑器和一个能解释执行的脚...

2020-05-28 00:18:39 40

转载 Linux学习笔记(4)

rpm命令rpm命令是RPM软件包的管理工具。rpm原本是Red Hat Linux发行版专门用来管理Linux各项套件的程序,由于它遵循GPL规则且功能强大方便,因而广受欢迎。逐渐受到其他发行版的采用。RPM套件管理方式的出现,让Linux易于安装,升级,间接提升了Linux的适用度。语法rpm(选项)(参数)选项-a:查询所有套件;-b<完成阶段><套件档>+或-t <完成阶段><套件档>+:设置包装套件的完成阶段,并指定套...

2020-05-28 00:17:51 29

转载 Linux学习笔记(3)

Linux 系统目录结构登录系统后,在当前命令窗口下输入命令: ls / 你会看到如下图所示:树状目录结构:以下是对这些目录的解释:/bin: bin是Binary的缩写, 这个目录存放着最经常使用的命令。 /boot: 这里存放的是启动Linux时使用的一些核心文件,包括一些连接文件以及镜像文件。 /dev : dev是Device(设备)的缩写, 该目录下存放的是Linux的外部设备,在Linux中访问设备的方式和访问文件的方式是相同的。 ...

2020-05-28 00:17:10 32

转载 Linux学习笔记(2)

Linux 安装为大家介绍Linux的安装。以 centos6.4 为例。centos 下载地址:可以去官网下载最新版本:https://www.centos.org/download/Linux 安装步骤1、首先,使用下载的Linux ISO文件进行安装。界面说明:Install or upgrade an existing system 安装或升级现有的系统install system with basic video driver 安装过程中采用基本...

2020-05-28 00:16:19 72

转载 Linux学习笔记(1)

Linux 简介Linux内核最初只是由芬兰人李纳斯·托瓦兹(Linus Torvalds)在赫尔辛基大学上学时出于个人爱好而编写的。Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和UNIX的多用户、多任务、支持多线程和多CPU的操作系统。Linux能运行主要的UNIX工具软件、应用程序和网络协议。它支持32位和64位硬件。Linux继承了Unix以网络为核心的设计思想,是一个性能稳定的多用户网络操作系统。Linux的发行版Linux的发行版说简单点就是将Lin

2020-05-28 00:15:25 36

转载 python实现图像检索的三种(直方图/OpenCV/哈希法)

这篇文章主要介绍了python实现图像检索的三种(直方图/OpenCV/哈希法),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧简介:本文介绍了图像检索的三种实现方式,均用python完成,其中前两种基于直方图比较,哈希法基于像素分布。检索方式是:提前导入图片库作为检索范围,给出待检索的图片,将其与图片库中的图片进行比较,得出所有相似度后进行排序,从而检索结果为相似度由高到低的图片。由于工程中还包含Qt界面类、触发函数等其.

2020-05-27 23:40:23 85

转载 Python破解验证码,只要15分钟就够了!

让我们一起攻破世界上最流行的WordPress的验证码插件每个人都讨厌验证码——在你被允许访问一个网站之前,你总被要求输入那些烦人的图像中所包含的文本。验证码被设计成,以验证你是一个真正的人的方式,来防止电脑自动填写表单。但是随着深度学习和计算机视觉的兴起,它们现在往往很容易被攻破。我在读Adrian Rosebrock的优秀的著作《Python计算机视觉深度学习》。在书中,Adrian简单地描述了他如何用机器学习绕过E-ZPass New York网站的验证码:Adrian没有访...

2020-05-27 01:10:39 104

转载 Python图像识别,图片相似度计算!

1.背景要识别两张图片是否相似,首先我们可能会区分这两张图是人物照,还是风景照等......对应的风景照是蓝天还是大海......做一系列的分类。从机器学习的的角度来说,首先要提取图片的特征,将这些特征进行分类处理,训练并建立模型,然后在进行识别。但是让计算机去区分这些图片分别是哪一类是很不容易的,不过计算机可以知道图像的像素值的,因此,在图像识别过程中,通过颜色特征来识别是相似图片是我们常用的(当然还有其特征还有纹理特征、形状特征和空间关系特征等,这些有分为直方图,颜色集,颜色局,聚合向量,相

2020-05-27 00:21:12 702

转载 图像检索系列——利用 Python 检测图像相似度!

前言最近在做一个海量图片检索的项目,可以简单的理解为“以图搜图”,这个功能一开始是搜索引擎带火的,但是后来在电商领域变得非常实用。在制作这个图片检索的项目前,笔者搜索了一些资料,如今项目临近结尾,便在这里做一些简单的分享。本文先介绍图像检索最基础的一部分知识——利用 Python 检测图像相似度。提到检测“某某”的相似度相信很多人第一想法就是将需要比较的东西构建成两个向量,然后利用余弦相似度来比较两个向量之间的距离,这种方法应用很广泛,例如比较两个用户兴趣的相似度、比较两个文本之间的相似度。但是这个

2020-05-26 10:12:19 163

转载 Python图像识别,图片相似度计算!

1.背景要识别两张图片是否相似,首先我们可能会区分这两张图是人物照,还是风景照等......对应的风景照是蓝天还是大海......做一系列的分类。从机器学习的的角度来说,首先要提取图片的特征,将这些特征进行分类处理,训练并建立模型,然后在进行识别。但是让计算机去区分这些图片分别是哪一类是很不容易的,不过计算机可以知道图像的像素值的,因此,在图像识别过程中,通过颜色特征来识别是相似图片是我们常用的(当然还有其特征还有纹理特征、形状特征和空间关系特征等,这些有分为直方图,颜色集,颜色局,聚合向量,相

2020-05-26 00:21:28 618

原创 如何正确理解和使用参考文献

内容提要:【一、参考文献引用的目的和作用——为什么要使用参考文献?】【二、参考文献的基本格式和使用规范——如何使用参考文献?】【2.1文献介绍遵循的原则】【2.2如何自查文献引用规范】【2.3参考文献的格式标准】【2.4文献列表的基本格式】【2.5文献引用的基本句型】【2.6文献引用的其它要求】【三、参考文献的查询与引用——介绍一种快速引用参考文献的方法】【四、文献示例——毕业论文中常见文献类型的引用示例】【小结】...

2020-05-23 18:48:51 566

转载 简单理解混淆矩阵—Matlab详细代码注解

本人计算机小白一枚,将自己学到的知识点整理出来,一方面是对自己学习的小总结,另一方面是欢迎大家批评指正。如果觉得写得还可以,大家可以转发关注此博客,谢谢!后续会有新算法持续更新~.一.混淆矩阵(一).简介在人工智能中,混淆矩阵(confusion matrix)是可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。在图像精度评价中,主要用于比较分类结果和实际测得值,可以把分类结果的精度显示在一个混淆矩阵里面。混淆矩阵是通过将每个实测像元的位置和分类与分类图像中的相应位置和分类像比较计算的.

2020-05-18 18:38:28 179

转载 机器学习之分类器——Matlab中各种分类器的使用总结(随机森林、支持向量机、K近邻分类器、朴素贝叶斯等)

Matlab中常用的分类器有随机森林分类器、支持向量机(SVM)、K近邻分类器、朴素贝叶斯、集成学习方法和鉴别分析分类器等。各分类器的相关Matlab函数使用方法如下:首先对以下介绍中所用到的一些变量做统一的说明:train_data——训练样本,矩阵的每一行数据构成一个样本,每列表示一种特征train_label——训练样本标签,为列向量test_data——测试样本,矩阵的每一行数据构成一个样本,每列表示一种特征test_label——测...

2020-05-16 22:52:45 774

转载 SMOTE(Synthetic Minority Over-Sampling Technique ,即“人工少数类过采样法“)----Python调包简单实现

一、SMOTE原理SMOTE的全称是Synthetic Minority Over-Sampling Technique 即“人工少数类过采样法”,非直接对少数类进行重采样,而是设计算法来人工合成一些新的少数样本。SMOTE步骤__1.选一个正样本红色圈覆盖SMOTE步骤__2.找到该正样本的K个近邻(假设K = 3)SMOTE步骤__3.随机从K个近邻中选出一个样本绿色的SMOTE步骤__4.在正样本和随机选出的这个近邻之间的连线上,随机找一点。这...

2020-05-16 22:29:24 537

转载 python划分训练集、验证集和测试集

机器学习简单流程:使用大量和任务相关的数据集来训练模型; 通过模型在数据集上的误差不断迭代训练模型,得到对数据集拟合合理的模型; 将训练好调整好的模型应用到真实的场景中;我们最终的目的是将训练好的模型部署到真实的环境中,希望训练好的模型能够在真实的数据上得到好的预测效果,换句话说就是希望模型在真实数据上预测的结果误差越小越好。我们把模型在真实环境中的误差叫做泛化误差,最终的目的是希望训练好的模型泛化误差越低越好。我们希望通过某个信号来了解模型的泛化误差,这样就可以指导我们得到泛化能力更强的模型

2020-05-16 21:27:15 2013

转载 机器学习采样方法大全

Index数据采样的原因 常见的采样算法 失衡样本的采样 采样的Python实现数据采样的原因其实我们在训练模型的过程,都会经常进行数据采样,为了就是让我们的模型可以更好的去学习数据的特征,从而让效果更佳。但这是比较浅层的理解,更本质上,数据采样就是对随机现象的模拟,根据给定的概率分布从而模拟一个随机事件。另一说法就是用少量的样本点去近似一个总体分布,并刻画总体分布中的不确定性。因为我们在现实生活中,大多数数据都是庞大的,所以总体分布可能就包含了无数多的样本点,模型是无法对这些海量的数据

2020-05-16 21:00:17 524

转载 数据集的非均衡问题(imbalanced data)和应对方法

写在前面:作者是数据挖掘/机器学习新人进阶,专栏目的是分享自己的学习与进阶过程,把自己觉得有趣有价值的内容放上来。内容基本总结自我看过的英文教材/论文/论坛,如果涉及到侵权等问题麻烦私信。这一篇的主要内容是在分类问题中解决不平衡(imbalanced)问题的思路,深入的数学原理及推理在参考文献中。我自己是R-user,正在学习Python,这篇文章不会有很实用的package教程,想看教程的可以去CSDN和github搜索相应的教程。如果有任何不清楚或不准确的描述,希望各位读者指出,多多指教啦!.

2020-05-16 20:41:14 729

转载 训练集、验证集、测试集以及交验验证的理解

在人工智能机器学习中,很容易将“验证集”与“测试集”,“交叉验证”混淆。一、三者的区别训练集(train set) —— 用于模型拟合的数据样本。验证集(development set)—— 是模型训练过程中单独留出的样本集,它可以用于调整模型的超参数和用于对模型的能力进行初步评估。在神经网络中, 我们用验证数据集去寻找最优的网络深度(number of hidden layers),或者决定反向传播算法的停止点或者在神经网络中选择隐藏层神经元的数量;...

2020-05-16 19:01:16 1065

转载 高光谱图像数据集

1:Washington DC Mal,Indian Pine等https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html2:Indian Pines,Salinas,Pavia Centre and University,Cuprite等http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes3:hydice的...

2020-05-12 01:01:39 396

转载 Matlab的数据类型及相互转换

Matlab中有15种基本数据类型,主要是整型、浮点、逻辑、字符、日期和时间、结构数组、单元格数组以及函数句柄等。 1、整型:(int8;uint8;int16;uint16;int32;uint32;int64;uint64)通过intmax(class)和intmin(class) 函数返回该类整型的最大值和最小值,例如intmax(‘int8’)=127;2、浮点:(single;double)浮点数:REALMAX('double')和REALMAX('single')...

2020-05-09 10:20:22 172

转载 Vlfeat (Matlab安装)

进入官方网页 http://www.vlfeat.org/1、下载vlfeat安装包, 2、安装,将下载的安装包放到某一个可以存放的位置,注意不能删除 3、在matlab的命令窗口中,运行vl_setup命令 程序如下:run('D:\matlab\vlfeat-0.9.21\toolbox/vl_setup') 4、检查是否安装成功vl_version verbose...

2020-05-05 03:25:35 84

转载 数学建模之MATLAB画图汇总

1. 二维数据曲线图1.1 绘制二维曲线的基本函数1.plot()函数plot函数用于绘制二维平面上的线性坐标曲线图,要提供一组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的二维曲线。例:t=0:0.1:2*pi;x=2 * t;y=t.*sin(t).*sin(t);plot(x, y);2. 含多个输入参数的plot函数plot函数可以包含若干组向量对,...

2020-05-03 23:20:10 221

转载 Hughes现象

Hughes现象是指在高光谱分析中过程中,随着参与运算波段数目的增加,分类精度“先增后降”的现象。与多光谱相比,高光谱图像的一个显著特点就是它的波段数目远远大于多光谱图像,因而可以提供更为丰富的细节信息,可以解决许多在多光谱中不能解决的目标探查和分类问题,但是由于Hughes现象的存在,使得高光谱图像的实际应用受到限制。由于多光谱图像的维数较少,训练样本的数目相对于特征空间的维数有较大的比...

2020-04-26 19:21:19 62

转载 scipy中稀疏矩阵coo_matrix, csr_matrix 的使用

当对离散数据进行拟合预测时,往往要对特征进行onehot处理,但onehot是高度稀疏的向量,如果使用List或其他常规的存储方式,对内存占用极大。这时稀疏矩阵类型 coo_matrix / csr_matrix 就派上用场了!这两种稀疏矩阵类型csr_matrix存储密度更大,但不易手工构建。coo_matrix存储密度相对小,但易于手工构建,常用方法为先手工构建coo_matrix,...

2020-04-22 23:42:02 213

转载 图数据集之cora数据集介绍- 用pyton处理 - 可用于GCN任务

cora数据集- 下载地址https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgzcora数据集- 内容介绍样本特征,标签,邻接矩阵该数据集共2708个样本点,每个样本点都是一篇科学论文,所有样本点被分为8个类别,类别分别是1)基于案例;2)遗传算法;3)神经网络;4)概率方法;5)强化学习;6)规则学习;7)理论 每篇论文都由一个14...

2020-04-22 22:19:19 272

转载 Win10+caffe+CUDA9.1+vs2013+Matlab2018b+GPU环境,跑通faster_rcnn-master

Win10+caffe+CUDA9.1+vs2013+Matlab2018b+GPU环境,跑通faster_rcnn-master一.软件安装因为我用的Matlab2018b是目前最新版本的Matlab,所以在网上能找到的配置环境参考案例很少,几乎没有对应的。所以就自己沉下心来参考以前的版本来自己配置环境。首先我装的是CUDA9.1,主要是因为Matlab2018b所需的版本至少是(...

2020-03-05 01:15:54 84

转载 ​​​​​​​(复制python包,产生的问题) pip Fatal error in launcher: Unable to create process using

今天把Python的安装位置也从C盘剪切到了D盘,然后修改了Path环境变量中对应的盘符:D:\Python27\;D:\Python27\Scripts;不管是在哪个目录,Python可以执行了,但是执行Pip的时候就出错了!D:\Python27\Scripts>pipFatal error in launcher: Unable to create process usi...

2020-02-27 21:01:48 58

提示
确定要删除当前文章?
取消 删除