原题
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
题目分析
求两个节点的最低的祖先。最低祖先可能为两个节点中的一个。
代码实现
public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q)
{
if (root == null)
return null;
if (p == root || q == root) //等于root,则最小祖先一定为root
return root;
bool pOnLeft = isOn(root.left, p);
bool qOnLeft = isOn(root.left, q);
if (pOnLeft != qOnLeft)
return root;
if (pOnLeft == true && qOnLeft == true)
return LowestCommonAncestor(root.left, p, q);
return LowestCommonAncestor(root.right, p, q);
}
//位于node上吗
private bool isOn(TreeNode node, TreeNode goal)
{
if (goal == null)
return true;
if (node == null)
return false;
if (node == goal)
return true;
if (isOn(node.left, goal) == true || isOn(node.right, goal) == true)
return true;
return false;
}

本文探讨了在二叉搜索树中查找两个指定节点的最低公共祖先的问题,并提供了一种有效的算法实现方案。该算法通过递归地判断目标节点是否位于当前节点的左侧或右侧来确定最低公共祖先。
393

被折叠的 条评论
为什么被折叠?



