两张YUV数据如何叠加

本文探讨了如何将两张YUV格式的图像数据进行叠加处理,详细解释了YUV颜色空间的特点以及叠加过程中需要注意的关键步骤和技术要点。

YUV数据怎么叠加

------解决方案--------------------------------------------------------
平面格式对Y,U,V分别叠加,打包格式直接叠加。 
------解决方案--------------------------------------------------------
直接copy就行 
------解决方案--------------------------------------------------------
分辨率width*height的YUV图片数据流格式Y + U + V
Y 数据的长度是 width*height
U 数据的长度 (width/2)*(height/2)
V 数据的长度 (width/2)*(height/2)
所以一祯图像数据流总长度是 width*height * 1.5

以此为依据分解两帧数据,然后对Y/U/V分别操作,

比如,两帧数据分别为
YUV0[]; // w640 x h480
YUV1[]; // w320 x h240

以pos{0,0}对准合并, 结果覆盖YUV0。

BYTE* buf0_y = YUV0[0];
BYTE* buf0_U = buf0_y + w640 * h480 ;
BYTE* buf0_V = buf0_U + w640 * h480/4;

BYTE* buf1_y = YUV1[0];
BYTE* buf1_U = buf1_y + w320 * h240 ;
BYTE* buf1_V = buf1_U + w320 * h240/4;

for ( int i = 0; i < h240; i ++)
{
memcpy(buf0_y,buf1_y,w320);
memcpy(buf0_u,buf1_u,w320/2);  
memcpy(buf0_v,buf1_v,w320/2);  
buf0_y += w640;
buf0_u += w640/2;
buf0_v += w640/2;
buf1_y += w320;
buf1_u += w320/2;
buf1_v += w320/2;
}
### 将YUV图像与带有Alpha通道的棋盘图案进行混合 为了实现YUV图像与带Alpha通道的棋盘图案之间的混合操作,可以遵循以下方法: OpenCV库提供了丰富的功能来处理不同色彩空间下的图像以及执行各种类型的图像融合。对于特定版本4.0.0中的变更日志提到支持多种颜色转换和图像处理函数[^1]。 #### 创建棋盘格模式并设置透明度 首先创建一个具有指定尺寸大小的黑白相间的棋盘格图片作为背景图层,并为其分配额外的一个用于表示不透明程度(即alpha值)的数据平面。这可以通过编程方式生成固定宽度高度下交替排列黑色白色像素点阵列来完成。 ```cpp cv::Mat createChessBoard(int rows, int cols){ cv::Mat board(rows * 8, cols * 8, CV_8UC4); uchar color; for (int i = 0; i < rows*8 ; ++i) { for (int j = 0; j < cols*8; ++j) { // 计算当前坐标对应的颜色 color = ((i / 8 + j / 8) % 2 == 0)? 255 : 0; // 设置BGR三个分量相同,A设为全透明或半透 board.at<cv::Vec4b>(i,j)[0]=color; board.at<cv::Vec4b>(i,j)[1]=color; board.at<cv::Vec4b>(i,j)[2]=color; board.at<cv::Vec4b>(i,j)[3]=(uchar)(color==255?255:127); // Alpha Channel } } return board; } ``` #### 转换YUV到RGB格式 由于大多数显示设备是以红绿蓝三原色为基础工作的,而原始输入可能是基于亮度(Y) 和两个色差(U,V) 组件构成的编码形式存储,在实际应用之前需要先将其转码成适合屏幕呈现的标准RGB模型。 ```cpp // 假定yuvImage已经加载好并且是一个单通道灰度图代表Y分量, // uChannel,vChannel分别是对应的U,V分量矩阵. cv::cvtColor(yuvImage, rgbImage,cv::COLOR_YUV2RGB_YV12 ); ``` #### 执行加权平均法合成两幅画作 最后一步就是利用线性插值算法按照各自权重比例计算新位置处各基色强度从而得到最终叠加效果后的输出结果;这里我们采用简单的按位运算符`&`,`|`配合逻辑判断语句控制是否保留源文件原有的色调特征还是完全覆盖掉它取决于所给定参数α的具体数值范围(通常介于0~1之间). ```cpp void blendImages(const cv::Mat &srcImg,const cv::Mat &dstImg,float alpha,cv::OutputArray result){ std::vector<int> fromTo={0,0,1,1,2,2}; cv::mixChannels(&srcImg,&dstImg,fromTo); srcImg.convertTo(srcImg,CV_32F); dstImg.convertTo(dstImg,CV_32F); Mat blended; addWeighted(srcImg,alpha,dstImg,(1-alpha),0.,blended); blended.convertTo(result,CV_8UC4); } // 使用上述定义的方法组合两张图片 blendImages(rgbImage,chessBoardPattern,0.5,outputBlendedImage); ``` 通过这种方式可以在保持原有视觉特性的基础上引入新的图形元素形成更加丰富多彩的画面表达样式.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值