hog自学

原创 2015年11月21日 13:20:46

这两天看hog,对其原理和代码的一些理解

    先确定一些参数,一般一个块有2×2个Cell,一个Cell有16×16个像素,梯度有两个参数,一个是模值,一个是方向,在平面一般分成9个方向,一共是180度的角度,

 

算法的主要步骤

   初始参数设置(忽略)

首先求整个图像的斜率,边缘强度等,下面是别人的代码

fy=[-1 0 1]; %定义竖直模板fx=fy'; %定义水平模板
Iy=imfilter(img,fy,'replicate'); %竖直边缘

Ix=imfilter(img,fx,'replicate'); %水平边缘

Ied=sqrt(Ix.^2+Iy.^2); %边缘强度

Iphase=Iy./Ix;              %边缘斜率,有些为inf,-inf,nan,其中nan需要再处理一下

接下来是求细胞的梯度直方图图,忽略归一化等,只说最核心的部分

     将原矩阵化成16×16的小CELL,以For循环的形式,先将原矩阵的第一个CELL的值赋给一个新的矩阵,就看出产生第一个CELL,分别有cell的强度矩阵(16×16)斜率矩阵(16×16),强度和斜率一一对应,将斜率变成角度,角度的范围在0到180度,之后用180度/该角度,用ceil()函数,得到1~9 九个方向,然后呢,将角度级为1的强度分别相加,可以直接相加或者高斯加权后相加,以for循环形式将1到9的角度分别相加,得到梯度直方图矩阵orient,(1×9),分别求出所有CELL的梯度直方图矩阵。

 之后是将四个CELL合成一个block,注意,block是重叠的,不是独立的,具体过程就是合并cell的度直方图矩阵形成block的。。。直方图矩阵(1×36)

   最后将所有block的方向梯度矩阵,其实可以看成向量,串联,形成一个大的矩阵。


  

    总结的不好,总之,HOG的主要步骤是,求出整个图片的斜率和强度,斜率变成角度,角度变成1,2.。。。9的等级,将cell中特定方向的强度相加,形成cell的梯度直方图,将cell合成block的直方图,block是重叠的,最后串联block的直方图,形成一个矩阵。



相关文章推荐

Opencv行人检测代码 自带hog检测

  • 2017年07月27日 17:42
  • 101KB
  • 下载

HOG负样本训练工具

  • 2015年11月30日 19:46
  • 948B
  • 下载

HOG特征提取代码(opencv处理基本数据,c语言实现基本算法)

#include #include using namespace cv; using namespace std; IplImage *bgrtogrey(IplImage*img) { ...

HOG特征提取

  • 2014年12月31日 16:08
  • 33KB
  • 下载

HOG+SVM测试图片

  • 2015年06月15日 22:38
  • 12.29MB
  • 下载

利用hog+svm(梯度方向直方图和支持向量机)实现物体检测

最近利用hog+svm做了一个物体检测的小程序,可以先给大家看看实验的结果。从照片中,检测出以任意姿态摆放在任意位置的公仔。 插入图片 其实吧,网上关于hog和svm的教程和书籍也非常多。但是很少有那...

HOG+SVM读取样本路径批处理文件

  • 2015年06月15日 22:14
  • 965B
  • 下载

基于HOG特征和SVM的手势识别

  • 2013年09月12日 18:30
  • 1.31MB
  • 下载

使用opencv作物件识别(一) —— 积分直方图加速HOG特征计算

注:转自  http://grunt1223.iteye.com/blog 方向梯度直方图(Histograms of Oriented Gradients,简称HOG特征)结合支持向量机( sup...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hog自学
举报原因:
原因补充:

(最多只允许输入30个字)